The anomaly that was not meant IIB

Based on:

2107.14227 with Arun Debray, Jonathan J. Heckman, and Miguel Montero (+ to appear, see also 2012.00013 with J.J. Heckman)

Ringberg - November 11, 2021

Markus Dierigl

The anomaly that was not meant IIB

Is the duality of type IIB anomalous?

(Broken by quantum corrections)

Anomaly:

- ullet Couple symmetry to background connection A
- Move in configuration space $A o A^g$
- Calculate partition function

$$Z[A] \neq Z[A^g]$$

Geometrize

- Small variations (contractible paths): perturbative anomalies
- Large variations (non-contractible paths): global anomalies
 - → (d+1)-dimensional manifold (mapping tori)

 [Witten '82]

Dai-Freed anomaly

[Dai, Freed '94], [Witten '15], [Yonekura '16], see also [Montero, Garcia-Etxebarria '18] for a great review

- Topology changes along path → 'quantum gravity' flavor
- Forms (d+1)-dimensional manifold with given structure
- Detected by evaluation of (d+1)-dimensional anomaly theory

Anomaly field theory

e.g. [Freed, Teleman '14]

$$Z[M] = e^{2\pi i \mathcal{A}(X)}, \quad \partial X = M$$

- Physical data extends from M to X
- No Dai-Freed anomalies if it does not depend on extension

$$- e^{2\pi i \mathcal{A}[X]} = 1$$

for closed manifolds with wanted structure up to deformations

$$\rightarrow$$
 $\Omega_{d+1}^{\text{structure}}$

classified by bordism groups

Duality anomaly for type IIB

Find correct bordism group

$$\Omega_{11}^{\mathrm{IIB-duality}}$$

- Find generator of bordism group
- Determine the anomaly theory

$$\mathcal{A}^{\mathrm{IIB}}$$

Make sure that

$$e^{2\pi i\mathcal{A}^{\mathrm{IIB}}} = 1$$

Duality group for type IIB

orientation reversal of worldsheet

 $\mathrm{SL}(2,\mathbb{Z})$

 $\mathrm{GL}(2,\mathbb{Z})$

$$S, T \ (S^4 = 1)$$

$$S, T, R \quad (S^4 = 1)$$

fermions

$$S, T \left(S^4 = (-1)^F \right)$$

$$S, T, R \ \left(S^4 = (-1)^F\right)$$

 $\mathrm{Mp}(2,\mathbb{Z})$

 $\operatorname{GL}^+(2,\mathbb{Z})$

[Pantev, Sharpe '16]

[Tachikawa, Yonekura '16]

The bordism group

- Decomposition into easier parts (amalgam structure, pequivalences, ...)
- Atiyah-Hirzebruch and Adams spectral sequences (highly non-trivial)

$$\Omega_{11}^{\mathrm{Spin-GL}^+(2,\mathbb{Z})} = (\mathbb{Z}_2)^{\oplus 9} \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{27}$$

Manifolds with twisted GL(2,Z) structure

→ Many potential anomalies!

The generators

- Hints from eta-invariants and cohomology classes
- A lot of (educated) guess work
 - Lens spaces L_k^n
 - Lens space bundles $\,Q_4^{11}\,$
 - Real projective spaces
 - Arcanum XI $X_{11}, \widetilde{X_{11}}$

with appropriate bundles

$$\begin{array}{c|cccc} \overline{\mathbb{Z}_{27}} & \overline{\mathbb{Z}_{31}} \\ \overline{\mathbb{Z}_{27}} & \overline{\mathbb{Z}_{31}} \\ \overline{\mathbb{Z}_{3}} & \overline{\mathbb{HP}^2 \times L_3^3} \\ \overline{\mathbb{Z}_{8}} & Q_4^{11} \\ \overline{\mathbb{Z}_{2}} & \overline{\mathbb{HP}^2 \times L_4^3} \\ \overline{\mathbb{Z}_{2}} & \overline{\mathbb{RP}^{11}} \\ \overline{\mathbb{Z}_{2}} & \overline{\mathbb{HP}^2 \times \mathbb{RP}^3} \\ \overline{\mathbb{Z}_{2}} & \overline{\mathbb{HP}^2 \times \mathbb{RP}^3} \\ \overline{\mathbb{Z}_{2}} & \overline{\mathbb{X}_{10} \times S^1} \\ \overline{\mathbb{Z}_{2}} & \overline{X_{10} \times S^1} \\ \overline{\mathbb{Z}_{2}} & \overline{X_{11}} \\ \end{array}$$

The anomaly theory

[Hsieh, Tachikawa, Yonekura '20]

$$\mathcal{A}(X) = \eta_1^{\mathrm{RS}}(X) - 2\eta_1^{\mathrm{D}}(X) - \eta_{-3}^{\mathrm{D}}(X) - \frac{1}{8}\eta_{-}^{\mathrm{sig}}(X) + \mathrm{Arf}(X) - \tilde{\mathcal{Q}}(\breve{c})$$
 fermions 4-form

- Contribution from signature operator to index theorem $\,\,\eta_-^{
 m sig}(X)\,\,$
- Requires the introduction of quadratic refinement $\mathcal Q$ of bilinear pairing in differential cohomology

$$\operatorname{Arf}(\tilde{\mathcal{Q}}) = \frac{1}{2\pi} \operatorname{arg}\left(\sum_{a \in A} e^{2\pi i \tilde{\mathcal{Q}}(a)}\right)$$

topologically non-trivial part

$$ilde{\mathcal{Q}}(reve{c})$$
 coupling to background, e.g. $C_4 \wedge F_3 \wedge H_3$ not considered here

Physical assumption: there is a canonical choice for \tilde{Q}

The duality anomaly

$$\mathcal{A}(X) = 0 \mod \mathbb{Z}$$

$$\begin{array}{c|cccc}
\mathbb{Z}_2 & \mathbb{RP}^{11} \\
\mathbb{Z}_2 & \mathbb{RP}^{11} \\
\mathbb{Z}_2 & \mathbb{HP}^2 \times \mathbb{RP}^3 \\
\mathbb{Z}_2 & \mathbb{HP}^2 \times \mathbb{RP}^3 \\
\mathbb{Z}_2 & X_{10} \times S^1 \\
\mathbb{Z}_2 & X_{10} \times \widetilde{S}^1
\end{array}$$

we don't know how to evaluate, let's assume it is OK

The duality anomaly

$$\mathbb{Z}_{27}$$
 | L_3^{11} \rightarrow $\mathcal{A}(X) = \frac{1}{3}$
 \mathbb{Z}_3 | $\mathbb{HP}^2 \times L_3^3$ \rightarrow $\mathcal{A}(X) = \frac{1}{3}$
 \mathbb{Z}_8 | Q_4^{11} \rightarrow $\mathcal{A}(X) = \frac{k}{4}$
 \mathbb{Z}_2 | $\mathbb{HP}^2 \times L_4^3$ \rightarrow $\mathcal{A}(X) = \frac{1}{2}$

Duality is anomalous

Meant IIB: The anomaly that was not

Anomaly cancellation

Remember: $\widetilde{\mathcal{Q}}(\breve{c})$ Choose \breve{c} in terms of bordism invariants such that anomaly is cancelled

Characteristic classes of bundle

$$\mathbb{Z}_3$$
: $a,\beta(a), \mathbb{Z}_4$: $b,\beta(b)$

a,b: discrete gauge fields $\beta(a),\beta(b)$: discrete fieldstrengths

Reductions of characteristic classes of manifold

$$(p_k)_n, w_k, \mathcal{P}(w_k) \dots$$

Anomaly cancellation

Let's take: S^{11}/\mathbb{Z}_3 which generates the \mathbb{Z}_{27} factor

Quadratic refinement is given by:

$$\widetilde{\mathcal{Q}}(n) = \frac{1}{3}n^2$$

Anomaly is given by:

$$\mathcal{A}[S^{11}/\mathbb{Z}_3] = \frac{1}{3} - \widetilde{\mathcal{Q}}(\breve{c})$$

Anomaly can

Chance: 1 in 26

be cancelled!

$$reve{c}=eta(a)^2\cup a$$
 evaluates to 1 on S^{11}/\mathbb{Z}_3 -

$$\mathcal{A}[S^{11}/\mathbb{Z}_3] = rac{1}{2} - \widetilde{\mathcal{Q}}(\check{c})$$

Anomaly cancellation

All the (calculable) anomalies canceled if we include: $(C_4, \check{c}_0) pprox F_5 \wedge \dots$

$$\tilde{\mathcal{Q}}(\breve{c}_0)$$
 with $\breve{c}_0 = \left(\lambda_1 \beta(a)^2 + \lambda_2 \frac{(p_1)_3}{2}\right) \cup a + \frac{\lambda_3}{2} [(p_1)_4 - \mathcal{P}(w_2)] \cup b + \kappa \beta(b)^2 \cup b$

 $\lambda_i \in \{-1, +1\}, \ \kappa \in \mathbb{Z} \mod 4$ (other physical systems (S-folds) suggest $\lambda_{1,3} = 1$)

The anomaly meant: That was not (type) IIB?!?

Alternatives

[Garcia-Etxebarria, Hayashi, Ohmori, Tachikawa, Yonekura '17]

Add sector without local degrees of freedom Ξ :

$$Z_{\Xi}(M) = e^{-2\pi i \mathcal{A}(X)}$$

 $ightharpoonup Z_{\Xi}(M)Z_{\mathrm{IIB}}(M)$ invariant

B (d-p)-form

E.g. higher-dimensional 'BF theory':

$$F = dA$$

$$S_{\mathrm{BF}} \sim (B,A) pprox \int_{M} B \wedge F$$
 A (p-1)-form

where B and A know about duality and tangent bundle

Modifications to theory

A and B couple naturally to extended objects (completeness hypothesis)

$$\exp\left(2\pi i \int_{\Sigma_{p-1}} A\right)$$

$$\exp\left(2\pi i \int_{\Sigma_{d-n}} B\right)$$

- New objects
- Known IIB backgrounds forbidden by 'tadpole cancellation'

Two possibilities:

- Topological GS in the Swampland → Why?
- Alternative consistent UV completions → Discrete Landscape

Domain walls connecting the different possibilities (cobordism conjecture)

[McNamara, Vafa '19], [Montero, Vafa '20]

Outlook

[Debray, Dierigl, Heckman, Montero soon(ish)]

What about

$$\Omega_d^{\mathrm{Spin}}ig((B\mathrm{SL}(2,\mathbb{Z}))\,,\ \Omega_d^{\mathrm{Spin-Mp}(2,\mathbb{Z})}\,,\ \Omega_d^{\mathrm{Spin-GL^+}(2,\mathbb{Z})}$$

for d < 11

Cobordism Conjecture tells us that $\,\Omega_{QG}\,$ should vanish

[McNamara, Vafa '19], [Montero, Vafa '20]

- Non-trivial classes forbidden ('selection rules', tadpole cancellation)
- New defects killing 'breaking' the non-trivial classes

When you open Polchinski you should be aware,
There likely are terms that are not yet in there,
If you want a fully invariant action,
Under duality and worldsheet reflection.

The quadratic refinement can help us to see,
The duality action is anomaly-free.
But it seems there are also alternative ways,
To get rid of the theory's anomalous phase.

A variety,
Of anomaly-free,
Type IIB
String theory?

But wait! There might be a solution at hand If we discre(e)tely put them in the swampland.

What would physics be, if all was about results, and not also fun

Conclusions

- We have the necessary tools to calculate anomalies (bordism classes, eta invariants, self-dual fields, a lot of new results there)
- The 'textbook version' of IIB is anomalous
- Can be cancelled by quadratic refinement term (very subtle new topological term in the action)
- Alternative cancellations via topological GS (modifications of spectrum of extended objects)
- Discrete Landscape or Topological Swampland

P.S.

Maybe the term

$$\tilde{\mathcal{Q}}(\check{c}_0)$$
 with $\check{c}_0 = \left(\lambda_1 \beta(a)^2 + \lambda_2 \frac{(p_1)_3}{2}\right) \cup a + \frac{\lambda_3}{2} [(p_1)_4 - \mathcal{P}(w_2)] \cup b + \kappa \beta(b)^2 \cup b$

appears naturally in the way one chooses the quadratic refinement on $\mathrm{Spin\text{-}GL}^+$ manifolds

- Part of defining data of type IIB rather than anomaly cancellation