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 anti-D3 down long throats �  
 redshift � very-small energy �
 lift AdS to dS   KKLT, ~2500 others

add fluxes + gaugino cond. ��f ix 
moduli � 10500 stable AdS vacua 
(negative cosmological constant)

Compactify to 4D on 6D manifold (Calabi-Yau) 
Lots of unphysical massless scalars (moduli)

THE LANDSCAPE

String Cosmology - Standard Lore



1. Fix Complex-structure moduli: fluxes  
on 3-cycles 

2. Fix Kähler moduli: D3 instantons or gaugino 
condensation on D7 branes 

3. Add antibranes: uplift cosmological constant

3 stages of de Sitter construction 
KKLT

CY moduli:    
- Complex-structure   
- Kähler



The problem
Steps 1,2,3: low-energy effective field theory 
using String-Theory-derived ingredients

Nontrivial interactions in String Theory
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The First Result 1 3 

Bena, Graña, Kuperstein, Massai

2-sphere3-sphere

 “probe" anti-D3  NS5 = metastable→

D3 charge  
dissolved in ISD fluxes

Klebanov-Strassler geometry

Kachru, Pearson, Verlinde;  Armas, Nguyen, Niarchos, Obers, Van Riet

Bena, Graña, Halmagyi, Kuperstein, Massai, 2009-2014
anti-D3 backreacted geometry: Coulomb-branch tachyon



KS                  

•  3-sphere size = conifold deformation modulus 
•  Fixed in flux compactification, flat in ∞ KS

2-sphere
3-sphere

3-spheresingularity

3 1 

Bena, Dudaș, Graña, S. Lüst 
Bena, Blåbäck, Graña, S. Lüst 

Second Result

KT

•  anti-D3 energy + flat direction ⇒  runaway to ∞ KT



Add single anti-D3 brane:

such that the minimum sKS in (2.19) stays always at the same position. So if one chooses

initial values for ⇤0, K and M such that sKS is small, it will remain small even if the throat

becomes extremely long and we are still in the regime of validity of the potential VKS ((2.17)).

To understand the behavior of VKS in the limit (2.26), we first notice that its numerator

⇠ |@SW |
2 depends on ⇤0 and K exlusively via their combination in sKS. Hence it does

not change under (2.26). On the other hand, the denominator of (2.17) does not explicitly

depend on K, but blows up for ⇤0 ! 1 and fixed S:
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|S|4/3
= c log⇤3

0 +O(K0⇤0
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under (2.26). Therefore, VKS converges pointwise to a flat potential:

VKS(S) ! 0 for |S| > 0 . (2.28)

This confirmes the intuition that S is an exact modulus of the infinite Klebanov-Strassler

solution that can be varied without any cost in energy.

2.3 The potential of an anti-D3 brane

An anti-D3 at the tip of the throat uplifts the KS potential (2.17). The contribution to the

potential is determined from

SD3 = SDBI + SCS = �T3

Z
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⇤
± T3

Z
C4 , (2.29)

where the sign in front of the second term is determined by the charge of the brane, and T3

is given by

T3 =
1

(2⇡)3↵02 . (2.30)

It is not hard to see that for the D3-brane in a background given by (2.1), the DBI and the

CS pieces of the action cancel each other. Hence, for the D3-brane they add up and one

finds

V
D3 = �2T3C4 =

2

(2⇡)3↵02H
�1 . (2.31)

Using the warp factor given in (2.9) we finally obtain

V
D3 =

⇡1/2
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|S|4/3

gs(↵0M)2
. (2.32)

Because I(⌧), defined in (2.10), is a monotonically decreasing function, this expression has

a minimum at ⌧ = 0. Consequently, a D3-brane has minimal energy if it is placed at the tip

of the throat. For later convenience we introduce

c00 =
21/3

I(0)
⇡ 1.75 . (2.33)
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whereas the positive sign correspondents to a local minimum and the negative sign to a local

maximum. Thus, the total potential for N anti-D3 branes has extrema only for5

p
gsM > Mmin with Mmin =

8

3

p

⇡c0c00 ⇡ 6.8
p

N . (3.3)

Otherwise the potential becomes monotonically increasing and the only minimum lies at

s = 0. This is illustrated in Figure 3, where we plot the combined potential for di↵erent

values of
p
gsM for a single anti-D3 brane, which we restrict to from now on since it gives the

least strong constraint on
p
gsM . As we will show, this minimum value for

p
gsM is in strong

tension with the tadpole cancelation condition and the requirement of a large hierarchy.

gs M = 7

gs M = 5

gs M = 12

S

V(S)

Figure 3: The combined potential VKS + V
D3 for one anti-D3 brane and

p
gsM = 5, 7 and

12. All three graphs are drawn for the same ratio K/M = 5. A local minimum only exists

if M is larger than the threshold value Mmin ⇡ 6.8.

3.1 de Sitter minima and hierarchy

Requiring the potential to have a critical point forces the lower bound
p
gsM & 6.8. On the

other hand, there is another bound on MK from above by the tadpole cancelation condition

(2.13)

MK 
��Qloc

3

�� . (3.4)

Of course, this bound can only be saturated if there is one complex structure modulus since

the flux required to stabilize additional moduli would contribute to the tadpole cancellation

5 The factor of
p
gs was missing in the first version of this paper and has been corrected in [28]. We thank

Ralph Blumenhagen for correspondence regarding this point. We furthermore corrected the numerical value
of Mmin with respect to the first version.
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The potential for the complex structure modulus S involves the fluxes M and K, while

it depends on the other fluxes only indirectly through the axion-dilaton ⌧ , whose vev is

determined by all fluxes. Furthermore, unlike the other “bulk” moduli, the potential for S

is highly a↵ected by the warp factor. Its functional form, derived in [16,17] is4

VKS =
⇡3/2
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where gs is the stabilized vev of the dilaton, Im ⇢ = (Vol6)3/2 (see Appendix A for more

details), c denotes the constant value of the warp factor at the UV and will not be relevant

here, whereas the constant c0, multiplying the term coming solely from the warp factor,

denotes an order one coe�cient, whose approximate numerical value was determined in [16]

to be

c0 ⇡ 1.18 . (2.18)

The potential VKS is plotted in Figure 1.

Figure 1: The potential VKS of [16] for the complex structure modulus S of the Klebanov-

Strassler throat given in (2.17). The solid blue line corresponds to the full potential, while

the dotted orange line does shows the näıve potential that does not take into account the

e↵ects of warping (c0 = 0). Both potentials have the same supersymmetric minimum but

di↵er drastically at small S.

The potential (2.17) has a supersymmetric minimum, corresponding to @SW = 0, which,

for S ⌧ ⇤3
0, is at

sKS ' ⇤3
0 exp

✓
�
2⇡K

gsM

◆
. (2.19)

4We follow the Einstein frame conventions of [24] and use 22
10 = (2⇡)7↵04.
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Quantum 
Correction

The potential for the complex structure modulus S involves the fluxes M and K, while

it depends on the other fluxes only indirectly through the axion-dilaton ⌧ , whose vev is

determined by all fluxes. Furthermore, unlike the other “bulk” moduli, the potential for S
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where gs is the stabilized vev of the dilaton, Im ⇢ = (Vol6)3/2 (see Appendix A for more

details), c denotes the constant value of the warp factor at the UV and will not be relevant

here, whereas the constant c0, multiplying the term coming solely from the warp factor,

denotes an order one coe�cient, whose approximate numerical value was determined in [16]

to be

c0 ⇡ 1.18 . (2.18)

The potential VKS is plotted in Figure 1.
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Figure 1: The potential VKS of [16] for the complex structure modulus S of the Klebanov-

Strassler throat given in (2.17). The solid blue line corresponds to the full potential, while

the dotted orange line does shows the näıve potential that does not take into account the

e↵ects of warping (c0 = 0). Both potentials have the same supersymmetric minimum but

di↵er drastically at small S.

The potential (2.17) has a supersymmetric minimum, corresponding to @SW = 0, which,

for S ⌧ ⇤3
0, is at

sKS ' ⇤3
0 exp

✓
�
2⇡K

gsM

◆
. (2.19)

4We follow the Einstein frame conventions of [24] and use 22
10 = (2⇡)7↵04.

8

Douglas, Torroba

Stabilization in compactification



• anti-D3 does not destabilize ∞ KS for large M 
• neither should a small BH horizon ⇒ 
•  conjecture: ∃ KS black hole   Bena, Dudaș, Graña, S. Lüst 
•  Deconfined, χSB. Confirmed by numerics    Buchel 
•  Existence range similar to metastable anti-D3:            

Bena, Buchel, S. Lüst

whereas the positive sign correspondents to a local minimum and the negative sign to a local

maximum. Thus, the total potential for N anti-D3 branes has extrema only for5

p
gsM > Mmin with Mmin =

8

3

p

⇡c0c00 ⇡ 6.8
p
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Otherwise the potential becomes monotonically increasing and the only minimum lies at

s = 0. This is illustrated in Figure 3, where we plot the combined potential for di↵erent

values of
p
gsM for a single anti-D3 brane, which we restrict to from now on since it gives the

least strong constraint on
p
gsM . As we will show, this minimum value for

p
gsM is in strong

tension with the tadpole cancelation condition and the requirement of a large hierarchy.
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Figure 3: The combined potential VKS + V
D3 for one anti-D3 brane and

p
gsM = 5, 7 and

12. All three graphs are drawn for the same ratio K/M = 5. A local minimum only exists

if M is larger than the threshold value Mmin ⇡ 6.8.

3.1 de Sitter minima and hierarchy

Requiring the potential to have a critical point forces the lower bound
p
gsM & 6.8. On the

other hand, there is another bound on MK from above by the tadpole cancelation condition

(2.13)

MK 
��Qloc

3

�� . (3.4)

Of course, this bound can only be saturated if there is one complex structure modulus since

the flux required to stabilize additional moduli would contribute to the tadpole cancellation

5 The factor of
p
gs was missing in the first version of this paper and has been corrected in [28]. We thank

Ralph Blumenhagen for correspondence regarding this point. We furthermore corrected the numerical value
of Mmin with respect to the first version.

12

∞-throat KS  
destabilization
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Dear colleagues,
I’m writing this letter to nominate my postdoc Chiara Toldo for a PCTS Postdoctoral Fellow-

ship. Chiara was hired last year on a joint Saclay-Ecole Polytechnique postdoc, and spent the first
year in Ecole Polytechnique. She is a very strong physicist, her expertise in supergravity is almost
without equal among people of her seniority. She also knows how to use her expertise to obtain
remarkable results outside of her field, and her work with Brian Willett is a perfect example of this.

Chiara has also been on several short lists for faculty positions in the last two years, and the
quality of her work makes me confident she will do very well in the future. I think she is at a level
which should allow her to do very well as a PCTS Postdoctoral Fellow and I am very happy to
nominate her.
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existing as solutions to the equations of motion, and this comparison is meaningful because
the underlying phenomenon is the same: the size of the S

3 of the deformed conifold, or
alternatively the vev of the field dual to chiral symmetry breaking is shrunk by the addition
of mass above extremality.

The comparison of the numerical results of [2] with the analytical results of [1] is easiest
to illustrate if one converts the energy above extremality of the black hole in “antibrane”
units, corresponding to the energy above extremality brought about by a single antibrane
placed in the warped deformed conifold. The KS black hole solution exists when

gsM
2
� �

2
BHND3 , (1)

where ND3 denotes the energy density of the black hole in antibrane units, while the an-
tibranes do not have a runaway when

gsM
2
� �

2
D3ND3 . (2)

In this paper we evaluate �BH and �D3 and find them to be

�BH ⇡ 4.16 and �D3 ⇡ 6.8 . (3)

This match is quite remarkable, both because the functional expression of the critical energies
as functions of the parameters of the solution are the same, and because the coe�cients
di↵er by so little despite the fact that we are comparing two very di↵erent sources of non-
extremality. Furthermore, one should not forget that the value of �D3 found in [1] is based on
the analysis of [10], in which the values of certain numerical coe�cients were only estimated
and not rigorously computed. Hence, this value also has error bars.

This remarkable match strongly reinforces the conclusion of [1], that the only warped
KS throats in flux compactifications that are not destabilized by the addition of a single
antibrane must have a RR three-form flux, M , larger then the value given in equation (2).
If one is to build a de Sitter flux compactification with stable moduli, the length of this
throat also needs to be quite large, which puts a lower limit on the amount of the NS-NS
three-form flux on the B-cycle. This in turn implies that the contribution of the fluxes of
this KS throat to the D3 tadpole of the compactification is larger than about 500 [1, 11].

Hence our analysis greatly reduces the space of Calabi-Yau manifolds where one may
hope to build a de Sitter solution in String Theory, by eliminating from the landscape all
the manifolds whose geometrical structure does not allow a negative contribution to the
tadpole whose absolute value is smaller than about 500. In an upcoming paper [12] two of
the authors and collaborators will show that most of these manifolds have unfixed moduli,
and reduce the question of the existence of de Sitter flux compactifications to a rigorous
problem that can be proven or disproven mathematically.
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Lost 100 units of charge Master Calabi-Yau has ? 
How embarrassing ? How embarrassing !

Runaway mode ↔ jaw becoming longer and longer 
Bena, Dudaș, Graña, S. Lüst

Goes away if

But total charge on compact space has to be zero !

UV-IR Hierarchy
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Hierarchy requires  
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~100

Add fluxes to stabilize  
these 303 148 moduli

∃χ(CY4)=1 820 448 
N3 = 75 852

 how much D3 charge ? 
> 100 000 ?

• O3 planes - at most -32 
• D7 planes on 4-cycle S with huge Euler number:  χ(S)/24 
• F-theory : χ(CY4)/24

Thus, we have reduced the arguments of whether such vacua exist to a mathematically-

provable conjecture. The purpose of this paper is to present evidence for this conjecture and

to link it with Lemma 1 and Lemma 2.

In section A we do B. In Section C we do D, etc.

2 The calculation - F theory side

All F-theory compactifications that have large �CY 4 have a large number of moduli as well,

which have to be stabilized. In F-theory these are (3,1) moduli (only? ) and in type IIB

these are D7 moduli. Conversely, to stabilize these moduli one needs to turn of F-theory

four-from fluxes, which in turn increase the tadpole that needs to be canceled. Hence, we

expect that increasing the �CY 4 while demanding that all the moduli be stabilized would

actually result in a positive contribution to the tadpole. Hence, the tadpole constraint one

would have to solve is of the form

N throat
D3 +
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2

Z
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G ^G =
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24
, (2.1)

subject to the constraint 1.2. We would like to argue that increasing �(Z) results in a

comparable increase in the number of (3,1) moduli and hence in the amount of (2,2) fluxes

one needs to turn on order to stabilize these moduli. This in turn will increase the second

term of the equation above, such that this equation will never be satisfied.

Note that this intuition would even rule out supersymmetric F-theory compactifications

with stabilized moduli when the Euler number is large, independent of the presence of

antibranes. This agrees with the fact that the only F-theory compactification with stabilized

moduli has a very small Euler number. [?]

To give flesh to this expectation it is important to be able to estimate what is the

tadpole contribution from the fluxes is. The naive argument is that for every (1,3) cycle

to be stabilized one needs to turn on one kind of self-dual flux (2,2) flux, which will give a

contribution
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where A2,2 and B2,2 represent all the (2,2) cycles and ⌘AB is their intersection matrix (in

cohomology ? integer cohomology ? something else). This matrix is positive definite,

and each integral in the brackets is integer, so one would expect that the tadpole contribution

coming from these fluxes will be of order

4

M/F-theory # real moduli IIB orientifold # real moduli

Kähler h1,1(Z)� 1 Kähler h1,1
+ (X)

Complex structure 2h2,1
� (X)

Complex structure 2h3,1(Z) D7 deformations 2 ĥ2,0
� (S)

Dilaton-axion 1

C6 axions h1,1(Z)� 1 C4 axions h1,1
+ (X)

C3 axions 2h2,1(Z) B2, C2 axions h1,1
� (X) + h1,1

� (X)

M2 positions 6ND3 D3 positions 6ND3

The subscripts ± denote the Hodge numbers counting the even resp. odd parts of the

relevant cohomology under the orientifold involution.

F-theory tadpole

ND3 +
1

2

Z

Z

G ^G =
�(CY4)

24
(4.1)

�(CY4) = 6(8 + h1,1 + h3,1 � h2,1) (4.2)

where to get this one uses

h2,2 = 2(22 + 2h1,1 + 2h3,1 � h2,1) (4.3)

In type IIB, the induced D3-charge of D7-branes wrapping a cycle S with world-volume

flux F and O7-planes is

Q3 =
1

24
(�(D7) + 4�(O7)) +

1

2

Z

S

(Tr(F ^ F)� TrF ^ TrF) (4.4)

not completely sure about the last 1/2.

�3�fold(X) = 2(h1,1 � h2,1) (4.5)

Adjunction formula:

�(S) =

Z

X

(S3 + c2(X)S) (4.6)
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How to get -100 units of charge ?

Tadpole question: How much tadpole is sourced by 
fluxes which stabilize  complex-structure moduli ?n

Taylor, Wang 15



What has been believed  
                                          e.g. Ashok, Denef, Douglas 

• Just throw any fluxes on cycles and 
everything will be fine.        

•  possibilities  
• Fluxes that stabilize all complex-structure 

moduli can have any tadpole one wants 
• One can turn on lots of fluxes and still have 

tadpole of order 1. For example: 

         

QD3 = 1
2 NA ηAB NB

10500

(1 0 1 0) ×
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

×
1
0
1
0



I’m a Romanian ! mind tricks do not work on me ! 
Only supergravity solutions !



What has been constructed
• Lots of “bubbling geometries” with self-dual 

fluxes wrapping and stabilizing  cycles 
• Fluxes source M2 charges ⇒ microstate 

geometries (fuzzballs) of M2-M2-M2 black hole 
    (Some can be dualized to Denef-type multicenter BHs)

n

      Bena, Wang, Warner,QM2 ∼ n 2



What happens when you try 
arbitrarily throwing fluxes:

• Warp factor:  =  
•  will have positive and negative 

regions.  wants to be negative 

• Most flux choices  Closed Timelike Curves 

• .  Impossible to get a smaller 
charge from fluxes on  cycles

d* d Z G ∧ G
G ∧ G

Z
⇒

QM2 ∼ n 2

n

If  one could blow an arbitrary nr. of 
bubbles@fixed charge  overcount BH entropy

QM2 ∼ n 0
⇒



Tadpole Question: 3 incarnations
• IIB:  complex-structure moduli stabilized 
by 3-form fluxes: 
 
 
 

 How does  grow with  ? 
• IIB: D7 moduli stabilized by worldvolume  
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 complex structure modulih 2,1

D7-brane moduli
 complex structure moduli of CY4h 3,1

3-form fluxes H3, F3
2-form fluxes  on D7F2

4-form flux G4
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Tadpole Question: 3 incarnations

∼ 1
4 n moduli

• F-theory on CY4



Description nmod. Qflux

D3
↵ =

Qflux

D3

nmod.

Ref.

Stabilization of D7-brane moduli in the IIB limit

of F-theory with a CP3 base (see Section 5)

n7 = 3728 1638 0.44 [2]

A Type-IIB compactification at a highly

symmetric point in moduli space (see also [36])

h2,1 = 128 48 0.38 [35]

h2,1 = 272 124 0.46 [10]

F-theory on the sextic Calabi-Yau four-fold with

fluxes on algebraic cycles

h3,1 = 426 775/4 0.45 [3]

M-theory on smooth K3⇥K3 using an evolution-

ary algorithm (Section 4)

57 25 0.44

Table 1.1: Examples for flux compactifications at a large number of moduli. We give the

number of moduli which are stabilized by fluxes, nmod., the charge induced by the fluxes which

stabilize these moduli, Qflux

D3
,and the corresponding value of ↵ in the tadpole conjectures.

KS throat with antibranes, and we argue that one cannot cancel such a large tadpole in a

compactification with stabilized moduli. We present some conclusions and future directions

in Section 7.

2 Flux compactifications

Fluxes in warped compactifications have to satisfy tadpole cancelation conditions arising

from Bianchi identities. These identities lead to local equations, which enforce a profile for

the warp factor in terms of the fluxes and local sources. Here we are interested in the global

tadpole conditions that arise from integrating these local equations over the whole internal

manifold. In these global equations the warp factor disappears, and one obtains conditions

enforcing the cancelation of the total charge sourced by branes and orientifolds and induced

by the fluxes and the curvature.

In Type IIB compactifications with 3-form fluxes, the cancellation condition of the D3-

brane tadpole is

1

2
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1

2

Z
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⇥
Tr(F ^ F)� TrF ^ TrF

⇤
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3
= 0 . (2.1)

where X is the double cover of the six-dimensional manifold and S denotes the four-cycle

wrapped by D7-branes with worldvolume flux F . In these compactifications the fluxes that
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Tadpole Question - answers

n moduli Qmin
flux



Tadpole Conjecture(s) 
                                                        Bena, Blåbäck, Graña, S. Lüst ‘20

1. Smallest charge sourced by the fluxes 
that stabilize  moduli grows linearly with            

2.     

  

Remarks: 
•  = minimum value.   
• No corresponding sugra solution with no ctc’s.

n n

α ≡ Qmin
flux

n moduli
> 1

3

Qmin
flux Qgeneric

flux ∼ n 2
moduli



Implications

• No F-theory stable vacua with large .  
All 10 272 000  vacua have flat directions !  

• D7 brane wrapped on 4-cycle with large    
• negative tadpole contribution   

• D7 moduli stabilized by fluxes with tadpole   
• Such D7 branes increase the tadpole
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Uplifting with 1 antibrane  throat of charge >100 
Bena, Dudaș, Graña, S. Lüst

⇒

Back to de Sitter

• Very hard/impossible to absorb so much 
tadpole with stabilized moduli:  

• Cannot be done with O3, O7 or D7

• Hard to go around: 
- hierarchy crucial in KKLT for getting small positive   
- maybe smaller hierarchy for LVS                      Crinò, Quevedo, Valandro  

- de Sitter with no hierarchy            Bento, Chakraborty, Parameswaran, Zavala

Λ

3 1 



Bare Bones de Sitter
• Top-down calculations also 

make some KKLT steps easier  

• Step        :  to fix moduli 

• Add by hand  

• Break susy, need small 

G(2,1)
G(0,3)

W0 ≠0

3 1 HELPS

Bena, Dudaș, Graña, Lo Monaco, Toulikas (to appear)

G(2,1)

G(0,3)

1

antibrane fluxes source   nonzero  !!!G(0,3) → W0

not necessary ! 
anti-D3



Tadpole Caveats 

• Moduli stabilization scenarios 

Standard scenario     Qflux ∼ n 2
moduli

Non-standard scenario  - seems to violate tadpole conjectureQflux = *(1)
Flux that enters the tadpole enters all equations for moduli

We believe it will be impossible to stabilize a large number of 
moduli with fluxes sourcing  charge*(1)

Bena, Brodie, Graña, S. Lüst,  in progress

Marchesano, Prieto, Wiesner ’21 

Only worked out in detail for the small number of moduli.  
Genericity problems.  S. Lüst;  Grimm, Plauschinn, van de Heisteeg ‘21

• Only based on calculations on spaces with special properties 

• Maybe on less symmetric spaces things will be different 

• Not likely. Example of F-theory  fibered over :  
, toric , Weak Fano  Bena, Brodie, Graña, to appear  

CY4 B3
ℂℙ3 ∼ *(1015)



How can we see this ?
•   where    

• Tadpole :  

• Throw arbitrary   naively any tadpole 

• However, at minimum    
• Tadpole contribution = everywhere positive 
• If many fluxes give zero or negative 

contributions  trouble

G4 = NAωA ωA ∈ H4(CY4, ℤ)
1
2 ∫Z

G4 ∧ G4 = 1
2 NA ηAB NB

NA ⇒
⇒ G4 = * G4

⇒



Many fluxes + small tadpole
Example:                       similar to Marchesano, Prieto, Wiesner 

 

             

  

            vanishing integrals (at least)

(1 fB 1 0 1 0 …) ×

0 1 0 0 0 0 …
1 0 0 0 0 0 …
0 0 0 1 0 0 …
0 0 1 0 0 0 …
0 0 0 0 0 1 …
0 0 0 0 1 0 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

×

1
fB
1
0
1
0
⋮

= 2 fB

G = NAωA = G1 + G2 + G3 + G4 + G5 + …

∫ G3 ∧ G2 = ∫ G5 ∧ G2 = ∫ G7 ∧ G2 = … = 0

∫ G1 ∧ G2 = fB *(n )

NA ηAB NB



∫ G3 ∧ G2 = 0

∫ G5 ∧ G2 = 0

∫ G7 ∧ G2 = 0

∫ G1 ∧ G2 = fB

+

Topology  
+ Fluxes

+

+ +

+

+

regions, some with  negative and  positive contributions  
 forces metric to make  in each region 

Metric screams  negative warp factors, ctc’s 

2n n 1
G4 = * G4 Qflux > 0

⇒



Scapezilla’s trail of destruction
“all antibranes are OK”                          2010

“gs NantiD3 ≪ 1 is OK”                                 2012 

“a single anti-D3 is OK”                         2015

“F-theory saves the day”                                            2020

tadpole >  canceled with D7s   2018*(100)

Impossible to stabilize large numbers of  
complex-structure moduli

No de Sitter via antibrane uplift in warped throats



– No lazy anthropic solution to fine-tuning problems 
– Back to drawing board in String Cosmology 
– No controlled construction of de Sitter ☹ 
–  No string inflation model one can trust ☹ 
–  In agreement with Swampland programme 
– Quintessence ?  ☹ 

    Non-perturbative ?

Conclusions

 Romanian Proverb: if 3 people tell you  
that you are drunk, go and take a nap !

Physics Version:  if 3 calculations tell you that 
something does not work, maybe it is time to give it up 

Calculations could have given pro-landscape results. They did not ! 

Where 
are we ?





D7 moduli stabilization

- F-theory on CY 4-fold fibered over a base B3 in Sen limit

•  D7-brane moduli

Tadpole conjecture

all D7-moduli
are stabilized 

If true, cannot stabilize 
a large number of moduli 
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