Massive Gravity: Landscape or Swampland?

Costas Bachas (ENS, Paris)

Conference on "Strings, Geometry and the Swampland"

Schloss Ringberg (November 8-12, 2021)

Relevant papers:

CB, I. Lavdas arXiv: 1711.11372; arXiv: 1807.00591

CB, B. Le Floch, I. Lavdas arXiv: 1905.0697 + in progress

CB, S. Lüst in progress

Today I will mainly rely on: CB arXiv: 1905.05039

and try to review more broadly the issue:

Are massive-gravity and bigravity EFTs in the string landscape or in swampland?

Massive gravity & bigravity: An unfamiliar corner of the Landscape/Swampland

Plan

- 1. EFTs for bigravity and massive gravity
 - 2. AdS and supersymmetry
 - 3. Holographic mechanisms
 - 4. String theory embeddings
 - 5. A (wild) conjecture

1. EFTs for massive gravity and bigravity

Brout-Englert-Higgs mechanism for interacting spin-1 fields:

Spontaneous breaking

$$G \times G \rightarrow G_{\text{diag}}$$

Stückelberg or "Goldstones"

$$G \ni V \to uV \mathcal{U}^{\dagger}$$

$$S_{\rm YM} = \int d^4x \left[-\frac{1}{4g_1^2} \sum_a F^a_{\mu\nu} F^{\mu\nu,a} - \frac{1}{4g_2^2} \sum_a f^a_{\mu\nu} f^{\mu\nu,a} + \frac{m^2}{2(g_1^2 + g_2^2)} \operatorname{tr} \left((D_\mu V)^\dagger D^\mu V \right) \right]$$

gauge-invariant mass term

 $g_2 \rightarrow 0$ decouples one set of gauge bosons

Scales:
$$m$$
, $\Lambda = \frac{m}{g_1}$

cutoff of EFT

New particles or strong coupling

For weak interactions LHC has settled the issue in favour of Higgs

Unless $m \ll \Lambda$ there is no EFT

NB in passing: $WGC \Leftrightarrow \Lambda < M_{Planck}$

A similar reasoning applied to gravity:

Arkani-Hamed, Georgi, Schwartz

Diffeo allows pullback:
$$\hat{G}_{\mu\nu} = \partial_{\mu}\Phi^{M}\partial_{\nu}\Phi^{N}G_{MN}$$

Scalar under X-diffeo Tensor under X-diffeo

$$S_{\text{bigrav}} = -\frac{1}{2\kappa_1^2} \int d^4X \sqrt{G} \left[R(G) + \Lambda_1 \right] - \frac{1}{2\kappa_2^2} \int d^4x \sqrt{g} \left[R(g) + \Lambda_2 \right]$$

$$+\frac{m^2}{2(\kappa_1^2+\kappa_2^2)}\int d^4x \sqrt{g} \, F(g_{\mu\nu},\hat{G}_{\mu\nu})$$

decouples one graviton freezes $G_{\!M\!N}$ to a fiducial metric massive gravity

Up to here same as for spin 1

But crucial difference:

 $\Phi^M(x)$ has 4 degrees of freedom, 3 missing polarizations + a ghost

Choosing $\,F\,$ to be 'mixed volume elements' decouples the ghost

e.g.
$$\int e_{abcd} e^a \wedge e^b \wedge \hat{E}^c \wedge \hat{E}^d$$
 Hinterblicher, Rosen

Fierz, Pauli

de Rham, Gabadadze, Tolley

Hassan, Rosen

By analogy one could have expected a cutoff scale

$$\Lambda_2 \sim \sqrt{\frac{m}{\kappa}}$$

Analysis of dRGT in Minkowski gives instead

$$\Lambda_3 \sim \left(\frac{m^2}{\kappa}\right)^{1/3}$$

Although specific to dRGT, this seems to be an "ultimate breakdown scale"

- No choice of F does better
- No spins < 2 can improve the bad high-E behavior

Bonifacio, Hinterblicher, Rosen

– Analyticity + improved unitarity of 4-point scattering indicates lower cutoff Λ_4

Cheung, Remmen; Bellazzini et al; de Rham, Melville, Tolley

Can dRGT or any variant EFT of massive gravity be in the Landscape?

The strong spin-2 swampland conjecture says NO

Kläwer, Lüst, Palti

cutoff: $\Lambda_1 \sim m$

evidence favouring this in Minkowski background

see end

But the story looks different in AdS

Disclaimer:

The low cutoff limits the phenomenological viability of m-gravity, though observations test the theory in cosmological bakgrounds and with massive sources

Dvali; . . .

But the question is of theoretical interest in its own right since IR modifications of gravity are **rare**

2. AdS & supersymmetry

Why AdS ?

- because \exists IIB string embedding
- because the dual CFT question is very interesting

Main difference in AdS dRGT: cutoff

$$\Lambda^{\star} \sim \left(\frac{m}{L \kappa}\right)^{1/3}$$

For "EFT" need $mL \ll 1$; $m \ll \Lambda^{\star}$

Why susy?

For technical convenience

Actually even N=1 susy ghost-free theory not yet constructed

Zinoviev; . . .

But IIB embedding indicates that maximal, N=4 extension exists

If so it should be a very special theory, like the conventional maximal supergravities

Superconformal representation theory narrows down possibilities

Consider to start BEH of spin S in D=4 dimensions:

This converts a short rep into a long rep of SO(2,3)

Mass
$$m^2 \sim \Delta - s - 1$$
 Scaling dimension

At the unitarity threshold $\Delta \to s+1$

$$[s]_{\Delta} \rightarrow ([s]_{s+1}) \oplus [s-1]_{s+2}$$

For spin 2 :
$$[2]_{3+\epsilon} \rightarrow [2]_3 \oplus [1]_4$$
 Stückelberg = massive vector

Porrati

With $\mathcal{N}=4$ supersymmetry the particles belong to reps of $\operatorname{Osp}(4\,|\,4)$

These are classified

Dolan Cordova, Dumitrescu, Intriligator

BEH of the supergraviton amounts to

 2^8 = helicity states = 128 bosons + 128 fermions

This is not possible for superconformal symmetries where the graviton supermultiplet is separated from continuum by mass gap

ruled out

	Susy	g	Massless graviton	
AdS_7	$\mathcal{N}=(2,0)$	$\mathfrak{osp}(8^* 4)$	$D_1[0,0,0]_4^{(0,2)}$	
	$\mathcal{N}=(1,0)$	$\mathfrak{osp}(8^* 2)$	$B_3[0,0,0]_4^{(0)}$	D > 5
AdS_6	$\mathcal{N}=1$	$\mathfrak{f}(4)$	$B_2[0,0]_3^{(0)}$	J
AdS_5	$\mathcal{N}=4$	$\mathfrak{psu}(2,2 4)$	$B_1\bar{B}_1[0;0]_2^{(2,0,2)}$	
	$\mathcal{N}=3$	$\mathfrak{su}(2,2 3)$	$B_1\bar{B}_1[0;0]_2^{(1,1;0)}$	122 O.V.
	$\mathcal{N}=8$	$\mathfrak{osp}(8 4)$	$B_1[0]_1^{(0,0,0,2)}$ or $(0,0,2,0)$	$\mathcal{N} > \frac{\max}{max}$
AdS_4	$\mathcal{N}=7$	$\mathfrak{osp}(7 4)$	$B_1[0]_1^{(0,0,2)}$	2
	$\mathcal{N}=6$	$\mathfrak{osp}(6 4)$	$B_1[0]_1^{(0,1,1)}$	
	$\mathcal{N}=5$	$\mathfrak{osp}(5 4)$	$B_1[0]_1^{(1,0)}$	

fits nicely with M-theory expectations of possible bnrs + defects

kinematically allowed m-sugras

m-ads5

m-ads4

	Susy	Multitrace	Massless graviton	Stueckelberg
AdS_5	$\mathcal{N}=2$	no	$A_2 \bar{A}_2 [0;0]_2^{(0;0)}$	$B_1\bar{B}_1[0;0]_4^{(4;0)} \oplus (A_2\bar{B}_1[0;0]_3^{(2;2)} \oplus cc)$
	$\mathcal{N}{=}1$	yes	$A_1 \bar{A}_1 [1;1]_3^{(0)}$	$L\bar{A}_2[1;0]_{7/2}^{(1)} \oplus cc$
AdS_4	$\mathcal{N}=4$	no	$A_2[0]_1^{0,0)}$	$B_1[0]_2^{(2,2)}$
	$\mathcal{N}=3$	no	$A_1[1]_{3/2}^{(0)}$	$A_2[0]_2^{(2)}$
	$\mathcal{N}=2$	yes	$A_1 \bar{A}_1 [2]_2^{(0)}$	$L\bar{A}_{1}[1]_{5/2}^{(1)}\oplus cc$
	$\mathcal{N}=1$	yes	$A_1[3]_{5/2}$	$L[2]_3$

In all cases the Stückelberg multiplet includes (extra) spin-3/2 gravitinos

Can these massive supergravities be constructed? Do they exist?

Remark

N=4 D=4 compatible with BEH of spin 2

but not of spin 1

because massless spin-1 multiplets are absolutely protected

Louis, Triendl '14 Corodova et al '16

Global symmetries of dual SCFT3 cannot break under marginal deformations; but em conservation can

3. Holographic BEH mechanisms

gravity

energy-momentum tensor

 t_{ij}

graviton

$$h_{\mu\nu}$$

dimension

mmass

$$\Delta(\Delta - d) = m^2 \ell_{\text{AdS}}^2$$

$$< tt > \sim c \sim (m_{\rm Pl} \ell_{\rm AdS})^{d-1}$$

$$\partial^i t_{ij} = 0$$

massless

conserved
$$\partial^i t_{ij} = 0$$

'leaking' $\partial^i t_{ij} = V_j$

Stückelberg

DUAL of BIMETRIC TH:

$$\mathcal{L} = \mathcal{L}_{\mathrm{cft}} + \mathcal{L}_{\mathrm{CFT}} + \delta \mathcal{L}$$

$$\delta \mathcal{L} = 0$$
 (decoupled) \Longrightarrow t_{ij}, T_{ij} separately conserved \Longrightarrow two massless gravitons

'weak' coupling
$$\Longrightarrow$$

$$T_{ij}^{\mathrm{tot}} = \frac{t_{ij} + T_{ij}}{\sqrt{c+C}}$$
 conserved

$$T_{ij}^{\mathrm{rel}} = \frac{Ct_{ij} - cT_{ij}}{\sqrt{C^2c + c^2C}}$$
 $\Delta = d + \epsilon$

$$\epsilon \ll 1$$

 $\epsilon \ll 1$ & all other spin-2 ops have $\Delta = d + o(\epsilon)$

$$\Delta = d + o(\epsilon)$$

NB limit of massive gravity:
$$C \to \infty \implies T_{ij}^{\mathrm{tot}} \simeq 0$$

Two dual BEH mechanisms

2 Gauge mediation gauge common global symmetry CB, Lavdas

low-n or weakly-coupled U(n) messenger gauge field

Double trace can at most preserve

 $\frac{1}{4}$ max susy

so it cannot be holographic-dual to mads4 or mads5

<u>Proof</u>: no marginal supermultiplet factorizes into a product of supermultiplets except for free fields

e.g. N=2, d=4 only marginal parameters are gauge couplings; while N=1, d=4 has also cubic superpotentials

Double trace is non-geometrical, corresponds to 2-particle bacground

4. String-theory embeddings

With this much susy the relevant dual SCFTs are

- d=3 (conjectured) IR fixed point of good Hanany-Gaiotto-Witten theories
- d=4 class-S Gaiotto N=2 SCFT theories

The supergravity solutions are explicitly known

D=4 IIB of the form
$$(AdS_4 \times S_2 \times S_2') \times_w \Sigma_2$$
 Assel, CB, Estes, Gomis D'Hoker, Estes, Gutperle

D=5 M-theory of the form
$$(AdS_5 \times S_2 \times S_1) \times_w \Sigma_3$$
 Gaiotto, Maldacena, Nunez

Both SCFT types are described by quiver gauge theories

but there are some key differences when one tries to cut the chain continuously in two disjoint quivers In d=4 vanishing of beta functions implies concave rank curve

So one cannot cut the chain by lowering the rank of a "weak node" One can take $g_{\rm weak} o 0$; no (known) smooth geometry of the bridge

must study degeneration in string theory

In d=3 there are no continuous parameters, but ranks not concave so can cut chain by taking $\frac{n_{\rm weak}}{n_i} \to 0$

In the dual geometry the bridge is a cutoff AdS5xS5 throat, or more generally its Janus deformation

$$ds^2 = dx^2 + e^{2A(x)}ds_{AdS4}^2 + d\tilde{s}_5^2$$
, $\phi(x)$

(Obscure in QFT) Janus parameter $\Delta\phi=\phi_\infty-\phi_\infty'$ Taking to infinity also decouples the theories and sends $\epsilon_{\rm gr}\to0$

5. An EFT N=4 D=4 m-supergravity?

Now to the punchline of this talk:

spin-2 spectrum in this IIB background is:

Is there an N=4 EFT for the lightest massive spin-2 mode?

Caveats:

- (i) \exists also massless gauge bosons on 5-branes dual to flavour currents
- (ii) validity of "EFT" in AdS should be defined through conformal bootstrap

If yes it should involve an unusual N=4 Stückelberg multiplet

Closed string; flavour neutral

$$\psi_{\mu}$$
, A_{μ} , ...
 4 $10+6$

A hitherto unknown deformation of N=8?

some unchartered territory for Gianguido's next book!

Note added:

Interesting recent work by De Luca, De Ponti, Mondino, Tomasiello extends Cheeger bounds to spin-2 KK mass operator in generic A(dS) or Mink compactifications.

If
$$m_1 \gtrsim 1/L$$
 then $m_2 \sim m_1$

(in line with strong spin-2 swampland conjecture in flat background)

Kläwer, Lüst, Palti

 $m_1 \ll 1/L$ no useful upper bounds For and even counterexamples with non-singular $m_1 \to 0$

Tomasiello (private)

breakdown of EFT should come from stringy/brane states

