Stability no-go theorems for classical de Sitter solutions

David ANDRIOT

LAPTh, CNRS, Annecy, France

Based on arXiv:2101.06251 arXiv:2004.00030 (with N. Cribiori, D. Erkinger) arXiv:2005.12930, 2006.01848 (with P. Marconnet, T. Wrase) + work in progress

Geometry, Strings and the Swampland 08/11/2021, Ringberg Castle, Tegernsee, Germany

Existence Stability

	Annecy
David	
ANDRIOT	

Introduction Existence Stability

Introduction Existence Stability

Conclusion

Annecy

Introduction Existence Stability

David ANDRIOT

Brief motivations: dark energy + swampland program

Introduction

Stability

David ANDRIOT

Brief motivations: dark energy + swampland program **Dark energy:** drives **accelerated expansion** today Nature? $w \approx -1$: ~ Λ , cosmological constant

Introduction Existence Stability

David ANDRIOT

Brief motivations: dark energy + swampland program **Dark energy:** drives **accelerated expansion** today Nature? $w \approx -1$: ~ Λ , cosmological constant Future (Λ CDM): completely dominated by dark energy \hookrightarrow 4d **de Sitter spacetime**: $\mathcal{R}_4 = 4\Lambda > 0$. Gravitational description:

$$\mathcal{S}_{\Lambda} = \int \mathrm{d}^4 x \sqrt{|G_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - M_p^2 \Lambda \right)$$

Introduction

Existenc

Stability

David ANDRIOT

> **Dark energy:** drives **accelerated expansion** today Nature? $w \approx -1$: ~ Λ , cosmological constant Future (Λ CDM): completely dominated by dark energy \hookrightarrow 4d **de Sitter spacetime**: $\mathcal{R}_4 = 4\Lambda > 0$. Gravitational description:

Brief motivations: dark energy + swampland program

$$\mathcal{S}_{\Lambda} = \int \mathrm{d}^4 x \sqrt{|G_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - M_p^2 \Lambda \right)$$

Accelerated expansion in **early universe**: inflation models Scalar field(s) ϕ^i coupled to gravity:

$$\mathcal{S} = \int \mathrm{d}^4 x \sqrt{|G_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij}(\phi) \partial_\mu \phi^i \partial^\mu \phi^j - V(\phi) \right)$$

Models in agreement with observations: single-field slow-roll inflation, plateau $V(\phi)$: $\partial_{\phi}V \approx 0$, $V \sim \text{constant}$.

 \hookrightarrow de Sitter spacetime: $\partial_{\phi} V|_0 = 0, \mathcal{R}_4 = 4\Lambda = \frac{4}{M_p^2} V|_0 > 0.$

Introduction Existence Stability

David ANDRIOT

Introduction Existence Stability Brief motivations: dark energy + swampland program **Dark energy:** drives **accelerated expansion** today Nature? $w \approx -1$: ~ Λ , cosmological constant Future (Λ CDM): completely dominated by dark energy \hookrightarrow 4d **de Sitter spacetime**: $\mathcal{R}_4 = 4\Lambda > 0$. Gravitational description:

$$\mathcal{S}_{\Lambda} = \int \mathrm{d}^4 x \sqrt{|G_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - M_p^2 \Lambda \right)$$

Accelerated expansion in **early universe**: inflation models Scalar field(s) ϕ^i coupled to gravity:

$$\mathcal{S} = \int \mathrm{d}^4 x \sqrt{|G_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij}(\phi) \partial_\mu \phi^i \partial^\mu \phi^j - V(\phi) \right)$$

Models in agreement with observations: single-field slow-roll inflation, plateau $V(\phi)$: $\partial_{\phi} V \approx 0$, $V \sim \text{constant}$.

Can one obtain such cosmological models S from a fundamental theory/quantum gravity? + with (quasi) de Sitter spacetime: $\partial_{\phi} V \approx 0$, $V > 0 \rightarrow$ origin to dark energy: $V(\phi)$

Introdu	iction

Stability

Can one obtain such cosmological models S from a fundamental theory/quantum gravity? + with (quasi) de Sitter spacetime: $\partial_{\phi} V \approx 0$, $V > 0 \rightarrow$ origin to dark energy: $V(\phi)$

Existence of de Sitter solutions in string theory?

Introduction Existence

Can one obtain such cosmological models S from a fundamental theory/quantum gravity? + with (quasi) de Sitter spacetime: $\partial_{\phi} V \approx 0$, $V > 0 \rightarrow$ origin to dark energy: $V(\phi)$

Existence of de Sitter solutions in string theory?

Important aspect for cosmological models: duration \rightarrow stability of $V(\phi)$ around de Sitter point

Introduction Existence

Can one obtain such cosmological models S from a fundamental theory/quantum gravity? + with (quasi) de Sitter spacetime: $\partial_{\phi} V \approx 0, V > 0 \rightarrow$ origin to dark energy: $V(\phi)$

Existence of de Sitter solutions in string theory?

Important aspect for cosmological models: duration \rightarrow stability of $V(\phi)$ around de Sitter point

Stability of de Sitter solutions in string theory?

Introduction Existence Stability

Can one obtain such cosmological models S from a fundamental theory/quantum gravity? + with (quasi) de Sitter spacetime: $\partial_{\phi} V \approx 0$, $V > 0 \rightarrow$ origin to dark energy: $V(\phi)$

Existence of de Sitter solutions in string theory?

Important aspect for cosmological models: duration \rightarrow stability of $V(\phi)$ around de Sitter point

Stability of de Sitter solutions in string theory?

Stability captured by $\partial_{\phi}^2 V|_0$, or more precisely (single field)

$$\eta_V = M_p^2 \frac{\partial_\phi^2 V}{V} , \qquad \epsilon_V = \frac{M_p^2}{2} \left(\frac{|\partial_\phi V|}{V}\right)^2$$

Introduction Existence Stability

Can one obtain such cosmological models S from a fundamental theory/quantum gravity? + with (quasi) de Sitter spacetime: $\partial_{\phi} V \approx 0, V > 0 \rightarrow$ origin to dark energy: $V(\phi)$

Existence of de Sitter solutions in string theory?

Important aspect for cosmological models: duration \rightarrow stability of $V(\phi)$ around de Sitter point

Stability of de Sitter solutions in string theory?

Stability captured by $\partial_{\phi}^2 V|_0$, or more precisely (single field)

$$\eta_V = M_p^2 \frac{\partial_\phi^2 V}{V} , \qquad \epsilon_V = \frac{M_p^2}{2} \left(\frac{|\partial_\phi V|}{V}\right)^2$$

Obs. slow-roll single field inflation: $\eta_V \sim -0.01$, $\epsilon_V \sim 0.001$. Planck Collaboration [arXiv:1807.06211] Multi-field inflation: different values possible, \checkmark obs. Difficult to realise in supergravity?

V. Aragam, R. Chiovoloni, S. Paban, R. Rosati, I. Zavala [arXiv:2110.05516]

Introduction Existence Stability

Swampland Program perspective

Characteristics of quantum gravity EFT $\rightarrow S$ + de Sitter sol.?

Int	ro	du	cti	ion

Stability

Swampland Program perspective

Characteristics of quantum gravity EFT $\rightarrow S$ + de Sitter sol.? De Sitter swampland conjectures in a nutshell:

• Existence

• Stability

Introduction

Existenc

Stability

Introduction

Existenc

Stability

Conclusion

Swampland Program perspective

Characteristics of quantum gravity EFT $\rightarrow S$ + de Sitter sol.? De Sitter swampland conjectures in a nutshell:

• Existence: no de Sitter solution in the asymptotics TCC bound: $M_p \frac{|\partial_{\phi} V|}{V}_{\phi \to \infty} \ge c \ge \sqrt{\frac{2}{3}}$ A. Bedroya, C. Vafa [arXiv:1909.11063]

H. Ooguri, E. Palti, G. Shiu, C. Vafa [arXiv:1810.05506]

(see however multifield proposal T. Rudelius [arXiv:2101.11617]) • Stability

Introduction

Existenc

Stability

Conclusion

Swampland Program perspective

Characteristics of quantum gravity EFT $\rightarrow S$ + de Sitter sol.? De Sitter swampland conjectures in a nutshell:

• Existence: no de Sitter solution in the asymptotics TCC bound: $M_p \frac{|\partial_{\phi} V|}{V}_{\phi \to \infty} \ge c \ge \sqrt{\frac{2}{3}}_{A, \text{Bedroya, C. Vafa [arXiv:1909.11063]}}$

H. Ooguri, E. Palti, G. Shiu, C. Vafa [arXiv:1810.05506]

(see however multifield proposal T. Rudelius [arXiv:2101.11617])

• Stability: $\eta_V \leq -1$ S. K. Garg, C. Krishnan [arXiv:1807.05193],

H. Ooguri, E. Palti, G. Shiu, C. Vafa [arXiv:1810.05506],

$$\eta_V \leqslant 0$$

D. A. [arXiv:1806.10999],

D. A., C. Roupec [arXiv:1811.08889],

bound on lifetime, metastable also possible

A. Bedroya, C. Vafa [arXiv:1909.11063]

Introduction Existence Stability

Conclusion

Swampland Program perspective

Characteristics of quantum gravity EFT $\rightarrow S$ + de Sitter sol.? De Sitter swampland conjectures in a nutshell:

• Existence: no de Sitter solution in the asymptotics TCC bound: $M_p \frac{|\partial_{\phi} V|}{V}_{\phi \to \infty} \ge c \ge \sqrt{\frac{2}{3}}_{A, \text{Bedroya, C. Vafa [arXiv:1909.11063]}}$

H. Ooguri, E. Palti, G. Shiu, C. Vafa [arXiv:1810.05506]

(see however multifield proposal T. Rudelius [arXiv:2101.11617])

• Stability: $\eta_V \leq -1$ S. K. Garg, C. Krishnan [arXiv:1807.05193],

H. Ooguri, E. Palti, G. Shiu, C. Vafa [arXiv:1810.05506],

 $\eta_V \leqslant 0$

D. A. [arXiv:1806.10999],

D. A., C. Roupec [arXiv:1811.08889],

bound on lifetime, metastable also possible

A. Bedroya, C. Vafa [arXiv:1909.11063]

Existence constraints (TCC bound) on solid grounds thanks to no-go theorems D. Andriot, N. Cribiori, D. Erkinger [arXiv:2004.00030] (in a large region of parameter space)

- \rightarrow no-go theorems for stability?
- \hookrightarrow clarify / check swampland proposals?
- \hookrightarrow characterise cosmological models?

David ANDRIOT	In string theory : difficult solutions	to get well-controlled de Sitter U. H. Danielsson, T. Van Riet [arXiv:1804.01120]
troduction		
xistence		
ability		
onclusion		

Introduction Existence Stability Conclusion

In string theory: difficult to get well-controlled de Sitter solutions

U. H. Danielsson, T. Van Riet [arXiv:1804.01120]

Here: focus on classical perturbative regime, i.e. classical de Sitter string backgrounds.

D. A. [arXiv:1902.10093]

Motivation: "simple" well-defined framework, good chances to control approximations

- + classical regime \leftrightarrow asymptotics of field space ?
- \hookrightarrow swampland conjectures w.r.t. no-go theorems

Effective theory: 10d supergravity

Look for solutions: 10d = 4d de Sitter × 6d compact space \mathcal{M} + curvature (\mathcal{R}_6), fluxes, sources (D_p -branes, O_p -planes)

Introduction Existence Stability Conclusion In string theory: difficult to get well-controlled de Sitter solutions

U. H. Danielsson, T. Van Riet [arXiv:1804.01120]

Here: focus on classical perturbative regime, i.e. classical de Sitter string backgrounds.

D. A. [arXiv:1902.10093]

Motivation: "simple" well-defined framework, good chances to control approximations

- + classical regime \leftrightarrow asymptotics of field space ?
- \hookrightarrow swampland conjectures w.r.t. no-go theorems

Effective theory: 10d supergravity

- Look for solutions: 10d = 4d de Sitter × 6d compact space \mathcal{M}
- + curvature (\mathcal{R}_6), fluxes, sources (D_p -branes, O_p -planes)
- \Rightarrow Existence and stability status?
 - Existence
 - Stability

Introduction Existence Stability Conclusion

In string theory: difficult to get well-controlled de Sitter solutions

U. H. Danielsson, T. Van Riet [arXiv:1804.01120]

Here: focus on classical perturbative regime, i.e. classical de Sitter string backgrounds.

D. A. [arXiv:1902.10093]

Motivation: "simple" well-defined framework, good chances to control approximations

- + classical regime \leftrightarrow asymptotics of field space ?
- \hookrightarrow swampland conjectures w.r.t. no-go theorems

Effective theory: 10d supergravity Look for solutions: 10d = 4d de Sitter × 6d compact space \mathcal{M} + curvature (\mathcal{R}_6), fluxes, sources (D_p -branes, O_p -planes)

- \Rightarrow Existence and stability status?
 - **Existence**: Few 10d supergravity de Sitter solutions: "candidate" solutions, despite no-go theorems. Up-to-date: no classical background (small g_s , large vol₆...)
 - Stability

Introduction Existence Stability Conclusion

In string theory: difficult to get well-controlled de Sitter solutions

U. H. Danielsson, T. Van Riet [arXiv:1804.01120]

Here: focus on classical perturbative regime, i.e. classical de Sitter string backgrounds.

D. A. [arXiv:1902.10093]

Motivation: "simple" well-defined framework, good chances to control approximations

- + classical regime \leftrightarrow asymptotics of field space ?
- \hookrightarrow swampland conjectures w.r.t. no-go theorems

Effective theory: 10d supergravity Look for solutions: 10d = 4d de Sitter \times 6d compact space \mathcal{M}

- + curvature (\mathcal{R}_6) , fluxes, sources $(D_p$ -branes, O_p -planes)
- \Rightarrow Existence and stability status?
 - **Existence**: Few 10d supergravity de Sitter solutions: "candidate" solutions, despite no-go theorems. Up-to-date: no classical background (small g_s , large vol₆...)
 - **Stability**: before 2021: observe on "candidate" de Sitter solutions: $\eta_V \leq -1 \rightarrow \text{very unstable}$
 - \hookrightarrow Prove that always true? Stability no-go theorem?

Existence of classical de Sitter solutions

Parameter space and no-go theorems

(A standard ansatz: intersecting O_p/D_p sources, 6d compact group manifold, constant fluxes) Parameter space: p size of D_p/O_p sources, \mathcal{R}_6 6d curvature

p	$\mathcal{R}_6 \ge 0$	$\mathcal{R}_6 < 0$
3	×	×
4	×	??
5	×	??
6	×	??
7	×	×
8	×	×
9	×	×

Existence Stability

> ×: no-go theorem! ??: possible, constrained. Constraints obtained with 5 supergravity equations (e.o.m., BI) T. Wrase, M. Zagermann [arXiv:1003.0029], G. Shiu, Y. Sumitomo [arXiv:1107.2925] D. A., J. Bläbäck, [arXiv:1609.00385], D. A. [arXiv:1710.08886] D. A. [arXiv:1807.09698], [arXiv:1902.10093] \hookrightarrow excluded in many cases. Remaining region: $\mathcal{R}_6 < 0, p = 4, 5, 6, F_{6-p} \neq 0, ... \rightarrow sol.?$

Existence

9 no-go theorems (for parallel D_p/O_p)

p	$\mathcal{R}_6 \ge 0$	$\mathcal{R}_6 < 0$			
3	(4	.)			
4		$T_{10} > 0 \ (1.), \ F_{6-p} \ (2.),$			
5	(3.)	$f^{ }_{\perp\perp}$ (5.), (6.), (9.), $f^{\perp}_{\perp }$ (7.), (8.),			
6		linear combi $(5.), (6.)$			
7					
8	(2.), (3.)	(2.)			
9					

(**number.**) = no-go theorem; entry = necessary ingredient

Existence

9 no-go theorems (for parallel D_p/O_p)

$\mathcal{R}_6 \ge 0$ $\mathcal{R}_6 < 0$ p3 (4.) $T_{10} > 0$ (1.), F_{6-p} (2.), 4 $f^{||}_{\perp\perp}$ (5.), (6.), (9.), $f^{\perp}_{\perp\mid\mid}$ (7.), (8.), 5(3.)6 linear combi(5.), (6.)7 8 (2.), (3.)(2.)9

(**number.**) = no-go theorem; entry = necessary ingredient

Relate supergravity constraints to swampland conjectures? \Rightarrow put them in swampland conjecture format!

	No-go theorem (2.) : for $p = 7, 8$, or $p = 4, 5, 6 \& F_{6-p} = 0$
David ANDRIOT	
Existence	

No-go theorem (2.): for p = 7, 8, or $p = 4, 5, 6 \& F_{6-p} = 0$

10d type II supergravities e.o.m.:

$$(p-3) \mathcal{R}_4 = -2|H|^2 - g_s^2 \sum_{q=0}^6 (q+p-8)|F_q|^2$$

Existence

Stabilit

No-go theorem (2.): for p = 7, 8, or $p = 4, 5, 6 \& F_{6-p} = 0$

10d type II supergravities e.o.m.:

$$(p-3) \mathcal{R}_4 = -2|H|^2 - g_s^2 \sum_{q=0}^6 (q+p-8)|F_q|^2 \leq 0$$

Existence

Stabilit

No-go theorem (2.): for p = 7, 8, or $p = 4, 5, 6 \& F_{6-p} = 0$ **10d** type II supergravities e.o.m.:

$$(p-3) \mathcal{R}_4 = -2|H|^2 - g_s^2 \sum_{q=0}^6 (q+p-8)|F_q|^2 \le \mathbf{0}$$

4d corresponding equations with $V(\rho, \tau)$:

$$4(p-3) \mathbf{V} + 2(p-4) \tau \partial_{\tau} \mathbf{V} + 4 \rho \partial_{\rho} \mathbf{V}$$

= $-\tau^{-2} \rho^{-3} 2|H|^2 - g_s^2 \sum_{q=0}^6 \tau^{-4} \rho^{3-q} (q+p-8)|F_q|^2 \leq \mathbf{0}$

Existence

Stability

No-go theorem (2.): for p = 7, 8, or $p = 4, 5, 6 \& F_{6-p} = 0$ **10d** type II supergravities e.o.m.:

$$(p-3) \mathcal{R}_4 = -2|H|^2 - g_s^2 \sum_{q=0}^6 (q+p-8)|F_q|^2 \le 0$$

4d corresponding equations with $V(\rho, \tau)$:

$$4(p-3) \mathbf{V} + 2(p-4) \tau \partial_{\tau} \mathbf{V} + 4 \rho \partial_{\rho} \mathbf{V}$$

= $-\tau^{-2} \rho^{-3} 2|H|^2 - g_s^2 \sum_{q=0}^{6} \tau^{-4} \rho^{3-q} (q+p-8)|F_q|^2 \leq \mathbf{0}$

Swampland format:

$$\Rightarrow \frac{|\nabla V|}{V} \geqslant \mathbf{c} = \sqrt{\frac{2(p-3)^2}{3+(p-4)^2}}$$

Existence Stability

Existence

No-go theorem (2.): for p = 7, 8, or $p = 4, 5, 6 \& F_{6-p} = 0$ **10d** type II supergravities e.o.m.:

$$(p-3) \mathcal{R}_4 = -2|H|^2 - g_s^2 \sum_{q=0}^6 (q+p-8)|F_q|^2 \le$$

4d corresponding equations with $V(\rho, \tau)$:

$$4(p-3) \mathbf{V} + 2(p-4) \tau \partial_{\tau} \mathbf{V} + 4 \rho \partial_{\rho} \mathbf{V}$$

= $-\tau^{-2} \rho^{-3} 2|H|^2 - g_s^2 \sum_{q=0}^{6} \tau^{-4} \rho^{3-q} (q+p-8)|F_q|^2 \leq \mathbf{0}$

Swampland format:

$$\Rightarrow \frac{|\nabla V|}{V} \ge \mathbf{c} = \sqrt{\frac{2(p-3)^2}{3+(p-4)^2}} \ge \sqrt{\frac{2}{3}} \text{ (for } \mathbf{p} = \mathbf{4})$$

No-go theorem (2.): for p = 7, 8, or $p = 4, 5, 6 \& F_{6-p} = 0$

10d type II supergravities e.o.m.:

$$(p-3) \mathcal{R}_4 = -2|H|^2 - g_s^2 \sum_{q=0}^6 (q+p-8)|F_q|^2 \le \mathbf{0}$$

4d corresponding equations with $V(\rho, \tau)$:

$$4(p-3) \mathbf{V} + 2(p-4) \tau \partial_{\tau} \mathbf{V} + 4 \rho \partial_{\rho} \mathbf{V}$$

= $-\tau^{-2} \rho^{-3} 2|H|^2 - g_s^2 \sum_{q=0}^{6} \tau^{-4} \rho^{3-q} (q+p-8)|F_q|^2 \leq \mathbf{0}$

Existence

Stability

Conclusion

Swampland format:

$$\Rightarrow \frac{|\nabla V|}{V} \ge \mathbf{c} = \sqrt{\frac{2(p-3)^2}{3+(p-4)^2}} \ge \sqrt{\frac{\mathbf{2}}{\mathbf{3}}} \text{ (for } \mathbf{p} = \mathbf{4})$$

 \hookrightarrow **TCC** bound?!

(no quantum gravity argument, no limit... except in a swampland perspective...)
No-go theorem (2.): for p = 7, 8, or $p = 4, 5, 6 \& F_{6-p} = 0$

10d type II supergravities e.o.m.:

$$(p-3) \mathcal{R}_4 = -2|H|^2 - g_s^2 \sum_{q=0}^6 (q+p-8)|F_q|^2 \le \mathbf{0}$$

4d corresponding equations with $V(\rho, \tau)$:

$$4(p-3) \mathbf{V} + 2(p-4) \tau \partial_{\tau} \mathbf{V} + 4 \rho \partial_{\rho} \mathbf{V}$$

= $-\tau^{-2} \rho^{-3} 2|H|^2 - g_s^2 \sum_{q=0}^{6} \tau^{-4} \rho^{3-q} (q+p-8)|F_q|^2 \leq \mathbf{0}$

Existence

Stability

Conclusion

Swampland format:

$$\Rightarrow \frac{|\nabla V|}{V} \ge \mathbf{c} = \sqrt{\frac{2(p-3)^2}{3+(p-4)^2}} \ge \sqrt{\frac{\mathbf{2}}{\mathbf{3}}} \text{ (for } \mathbf{p} = \mathbf{4})$$

 \hookrightarrow **TCC** bound?!

(no quantum gravity argument, no limit... except in a swampland perspective...) \rightarrow all 9 no-go theorems...

Existence

Done in D. A., N. Cribiori, D. Erkinger [arXiv:2004.00030]

No-go number	Condition for the no-go	с
(1.)	$T_{10} \leqslant 0$	$\sqrt{2}$
(2.)	$p = 7, 8$, or $p = 4, 5, 6 \& F_{6-p} = 0$	$\sqrt{\frac{2(p-3)^2}{3+(p-4)^2}} \ge \sqrt{\frac{2}{3}}$
(3.)	$\mathcal{R}_6 \ge 0, p \ge 4$	$\sqrt{\frac{2(p+3)^2}{3+p^2}} > 1$
(4.)	p = 3	$2\sqrt{\frac{2}{3}}$
(5.)	$\mathcal{R}_{ } + \mathcal{R}_{ }^{\perp} + \frac{\sigma^{-12}}{2} f^{ }_{\perp\perp} ^2 \leq 0, p \geq 4$	$\sqrt{\frac{2(p-3)}{p-1}} \ge \sqrt{\frac{2}{3}}$
(6.)	$-2\rho^2 \sigma^{2(p-6)}(\mathcal{R}_{ } + \mathcal{R}_{ }^{\perp}) + H^{(2)} ^2 \leq 0$	$2\sqrt{\frac{2}{3}}$
(7.)	$\lambda \leqslant 0, p \geqslant 4$	$\sqrt{\frac{2}{3}}$
(9.)	$\exists a_{ } \text{ s.t. } f^{a_{ }}{}_{ij} = 0 \ \forall i, j \neq a_{ }, p \ge 4$	$\sqrt{\frac{2}{3}}$

TCC bound always satisfied! Sometimes with saturation.

Surprising quantitative verification of de Sitter swampland conjectures (in this part of parameter space).

Introduction Existence

Stabilit

Conclusion

Surprising quantitative verification of de Sitter swampland conjectures (in this part of parameter space).

 \rightsquigarrow investigate remaining region of parameter space...

Introduction Existence Stability

Introduction Existence Stability Conclusion **Surprising quantitative verification** of de Sitter swampland conjectures (in this part of parameter space).

 \rightsquigarrow investigate remaining region of parameter space...

Aparte: web of swampland conjectures \rightarrow translate the obstruction on classical de Sitter to another conjecture? \leftarrow the distance conjecture \rightarrow bound on parameter λ

4d:
$$\lambda \ge \lambda_0 = \frac{1}{2}\sqrt{\frac{2}{3}} = \frac{1}{\sqrt{6}}, \quad \lambda_0 = \frac{1}{2}c_0$$

asymptotic claims: $m \sim V^{\frac{1}{2}}$

Verified in all examples! T. W. Grimm, E. Palti, I. Valenzuela [1802.08264] ... A. Ashmore, F. Ruehle [2103.07472]

Looking for classical de Sitter solutions

Remaining region of par. space: p = 4, 5, 6. Or multiple sizes. **Two steps**:

1.

Introduction Existence Stability

Conclusion

2.

Introduction Existence Stability Looking for classical de Sitter solutions

Remaining region of par. space: p = 4, 5, 6. Or multiple sizes. **Two steps**:

1. find 10d supergravity de Sitter solution ("candidate"):

C. Caviezel, P. Koerber, S. Kors, D. Lüst, T. Wrase, M. Zagermann [arXiv:0812.3551],

R. Flauger, S. Paban, D. Robbins, T. Wrase [arXiv:0812.3886],

C. Caviezel, T. Wrase, M. Zagermann [arXiv:0912.3287],

U. H. Danielsson, P. Koerber, T. Van Riet [arXiv:1003.3590],

U. H. Danielsson, S. S. Haque, P. Koerber, G. Shiu, T. Van Riet, T. Wrase [arXiv:1103.4858],

C. Roupec, T. Wrase [arXiv:1807.09538],

D. A., P. Marconnet, T. Wrase [arXiv:2005.12930],

D. Andriot [arXiv:2101.06251]

with intersecting O_6/D_6 , or $O_5 \& O_7$, or O_5/D_5 (new).

2.

Introduction Existence Stability Looking for classical de Sitter solutions

Remaining region of par. space: p = 4, 5, 6. Or multiple sizes. **Two steps**:

1. find 10d supergravity de Sitter solution ("candidate"):

C. Caviezel, P. Koerber, S. Kors, D. Lüst, T. Wrase, M. Zagermann [arXiv:0812.3551],

R. Flauger, S. Paban, D. Robbins, T. Wrase [arXiv:0812.3886],

C. Caviezel, T. Wrase, M. Zagermann [arXiv:0912.3287],

U. H. Danielsson, P. Koerber, T. Van Riet [arXiv:1003.3590],

U. H. Danielsson, S. S. Haque, P. Koerber, G. Shiu, T. Van Riet, T. Wrase [arXiv:1103.4858],

C. Roupec, T. Wrase [arXiv:1807.09538],

D. A., P. Marconnet, T. Wrase [arXiv:2005.12930],

D. Andriot [arXiv:2101.06251]

with intersecting O_6/D_6 , or $O_5 \& O_7$, or O_5/D_5 (new).

Teaser: D. Andriot, L. Horer, P. Marconnet, work in progess More general and systematic search for de Sitter solutions: Solutions with 1 O_4 , 1 O_6 , 1 D_6 ...

2.

Introduction Existence Stability Looking for classical de Sitter solutions

Remaining region of par. space: p = 4, 5, 6. Or multiple sizes. **Two steps**:

1. find 10d supergravity de Sitter solution ("candidate"):

C. Caviezel, P. Koerber, S. Kors, D. Lüst, T. Wrase, M. Zagermann [arXiv:0812.3551],

R. Flauger, S. Paban, D. Robbins, T. Wrase [arXiv:0812.3886],

C. Caviezel, T. Wrase, M. Zagermann [arXiv:0912.3287],

U. H. Danielsson, P. Koerber, T. Van Riet [arXiv:1003.3590],

U. H. Danielsson, S. S. Haque, P. Koerber, G. Shiu, T. Van Riet, T. Wrase [arXiv:1103.4858],

C. Roupec, T. Wrase [arXiv:1807.09538],

D. A., P. Marconnet, T. Wrase [arXiv:2005.12930],

D. Andriot [arXiv:2101.06251]

with intersecting O_6/D_6 , or $O_5 \& O_7$, or O_5/D_5 (new).

Teaser: D. Andriot, L. Horer, P. Marconnet, work in progess More general and systematic search for de Sitter solutions: Solutions with 1 O_4 , 1 O_6 , 1 D_6 ...

2. verify that in classical string regime: small g_s , large vol₆...

C. Roupec, T. Wrase [arXiv:1807.09538],

D. Junghans [arXiv:1811.06990],

A. Banlaki, A. Chowdhury, C. Roupec, T. Wrase [arXiv:1811.07880],

D. A. [arXiv:1902.10093],

T. W. Grimm, C. Li, I. Valenzuela [arXiv:1910.09549],

D. A., P. Marconnet, T. Wrase [arXiv:2006.01848]

 \hookrightarrow no solution left!

Classical regime of string theory \tilde{a}

Comments:

• Why not working? A general property of string theory?

Introduction Existence

Stability

Conclusion

Classical regime of string theory Comments:

- Why not working? A general property of string theory?
- A very constrained problem. Move/deform in one direction in parameter/moduli space
 → hit a bound.
 - \hookrightarrow classical de Sitter solutions live *at best* in a **bounded region** of parameter space. Probably not in asymptotics (see swampland conjectures).

Introduction Existence Stability

Classical regime of string theory

Comments:

- Why not working? A general property of string theory?
- A very constrained problem. Move/deform in one direction in parameter/moduli space
 → hit a bound.
 - \hookrightarrow classical de Sitter solutions live *at best* in a **bounded region** of parameter space. Probably not in asymptotics (see swampland conjectures).
- Reminiscent of problems in other approaches:
 - KKLT: "The tadpole problem"

I. Bena, J. Blåbäck, M. Graña, S. Lüst [arXiv:2010.10519]

• LVS: "Boundary of validity..."

C. Crinò, F. Quevedo and R. Valandro [arXiv:2010.15903]

Introduction Existence Stability

Conclusion

Classical regime of string theory

- Comments:
 - Why not working? A general property of string theory?
 - A very constrained problem.
 Move/deform in one direction in parameter/moduli space
 → hit a bound.
 - \hookrightarrow classical de Sitter solutions live *at best* in a **bounded region** of parameter space. Probably not in asymptotics (see swampland conjectures).
 - Reminiscent of problems in other approaches:
 - KKLT: "The tadpole problem"

I. Bena, J. Blåbäck, M. Graña, S. Lüst [arXiv:2010.10519]

• LVS: "Boundary of validity..."

C. Crinò, F. Quevedo and R. Valandro [arXiv:2010.15903]

Summary on existence:

- No-gos, match swampland conjectures
- Remaining region \rightarrow find de Sitter supergravity solutions
- Classical regime analysis

Introduction Existence Stability

Two points on existence no-go theorems: (canonical basis $\phi^i \to \hat{\phi}^i$) Existence Similar for stability no-go theorems!

Two points on existence no-go theorems:

(canonical basis $\phi^i \to \hat{\phi}^i$)

• Assumption (e.g. $\mathcal{R}_6 \ge 0$)

$$\hookrightarrow \sum \hat{b}_{\hat{\phi}^i} \partial_{\hat{\phi}^i} V < 0$$

 \rightarrow no solution

$$\hookrightarrow V + \sum \hat{b}_{\hat{\phi}^i} \partial_{\hat{\phi}^i} V \leqslant 0 \quad \Rightarrow \quad M_p \frac{|\nabla V|}{V} = \sqrt{2\epsilon_V} \geqslant \frac{1}{\sqrt{\sum \hat{b}_{\hat{\phi}^i}^2}} = c$$

 \rightarrow bound on ϵ_V

Similar for stability no-go theorems!

Existence

Stability

Conclusion

Two points on existence no-go theorems:

(canonical basis $\phi^i \to \hat{\phi}^i$)

• Assumption (e.g. $\mathcal{R}_6 \ge 0$)

$$\hookrightarrow \sum \hat{b}_{\hat{\phi}^i} \partial_{\hat{\phi}^i} V < 0$$

 \rightarrow no solution

$$\hookrightarrow V + \sum \hat{b}_{\hat{\phi}^i} \partial_{\hat{\phi}^i} V \leqslant 0 \quad \Rightarrow \quad M_p \frac{|\nabla V|}{V} = \sqrt{2\epsilon_V} \ge \frac{1}{\sqrt{\sum \hat{b}_{\hat{\phi}^i}^2}} = c$$

\rightarrow bound on ϵ_V

Single field interpretation: $\sum \hat{b}_{\hat{\phi}^i} \partial_{\hat{\phi}^i} = \sqrt{\sum \hat{b}_{\hat{\phi}^i}^2} \partial_{\hat{t}_b}$ \hookrightarrow each no-go theorem has to do with a single specific field direction $\hat{t}_b \to$ asymptotic claim.

Similar for stability no-go theorems!

Existence Stability

Conclusion

Two points on existence no-go theorems:

(canonical basis $\phi^i \to \hat{\phi}^i$)

• Assumption (e.g. $\mathcal{R}_6 \ge 0$)

$$\hookrightarrow \sum \hat{b}_{\hat{\phi}^i} \partial_{\hat{\phi}^i} V < 0$$

 \rightarrow no solution

$$\hookrightarrow V + \sum \hat{b}_{\hat{\phi}^i} \partial_{\hat{\phi}^i} V \leqslant 0 \quad \Rightarrow \quad M_p \frac{|\nabla V|}{V} = \sqrt{2\epsilon_V} \ge \frac{1}{\sqrt{\sum \hat{b}_{\hat{\phi}^i}^2}} = c$$

\rightarrow bound on ϵ_V

Single field interpretation: $\sum \hat{b}_{\hat{\phi}^i} \partial_{\hat{\phi}^i} = \sqrt{\sum \hat{b}_{\hat{\phi}^i}^2} \partial_{\hat{t}_b}$ \hookrightarrow each no-go theorem has to do with a single specific field direction $\hat{t}_b \to$ asymptotic claim.

• Circumvent no-go theorem \rightarrow violate assumption (e.g. $\mathcal{R}_6 < 0$) \rightarrow look for solutions there

Similar for stability no-go theorems!

Existence Stability

Conclusior

Introduction Existence Stability

Conclusion

Stability of classical de Sitter solutions

D. Andriot [arXiv:2101.06251]

10d supergravity de Sitter solutions (< 2021) are all pert. **unstable**: 4d tachyon, maximum of V, $\eta_V < -1$. \hookrightarrow Always the case? (cosmology, swampland conjectures...)

Introduction Existence Stability Stability of classical de Sitter solutions

D. Andriot [arXiv:2101.06251]

10d supergravity de Sitter solutions (< 2021) are all pert. **unstable**: 4d tachyon, maximum of V, $\eta_V < -1$. \hookrightarrow Always the case? (cosmology, swampland conjectures...)

Many works on understanding/proving this property, but not established \rightarrow proof (no-go) or counter-examples?

G. Shiu, Y. Sumitomo [arXiv:1107.2925], D. Junghans, M. Zagermann [arXiv:1612.06847]...

Introduction Existence Stability Conclusion

M

Stability of classical de Sitter solutions

D. Andriot [arXiv:2101.06251]

10d supergravity de Sitter solutions (< 2021) are all pert. **unstable**: 4d tachyon, maximum of V, $\eta_V < -1$. \hookrightarrow Always the case? (cosmology, swampland conjectures...)

Many works on understanding/proving this property, but not established \rightarrow **proof (no-go) or counter-examples**?

G. Shiu, Y. Sumitomo [arXiv:1107.2925], D. Junghans, M. Zagermann [arXiv:1612.06847]...

Iultifield: mass matrix
$$\hat{M}^{i}{}_{j} = \delta^{ik} \partial_{\hat{\phi}^{k}} \partial_{\hat{\phi}^{j}} V$$

$$\eta_{V} = M_{p}^{2} \frac{\operatorname{Min} \nabla \partial V}{V}$$

where $\operatorname{Min} \nabla \partial V =$ **minimal eigenvalue** of \hat{M} .

Introduction Existence Stability

Μ

Stability of classical de Sitter solutions

D. Andriot [arXiv:2101.06251]

10d supergravity de Sitter solutions (< 2021) are all pert. **unstable**: 4d tachyon, maximum of V, $\eta_V < -1$. \hookrightarrow Always the case? (cosmology, swampland conjectures...)

Many works on understanding/proving this property, but not established \rightarrow **proof (no-go) or counter-examples?**

G. Shiu, Y. Sumitomo [arXiv:1107.2925], D. Junghans, M. Zagermann [arXiv:1612.06847]...

Iultifield: mass matrix
$$\hat{M}^{i}{}_{j} = \delta^{ik} \partial_{\hat{\phi}^{k}} \partial_{\hat{\phi}^{j}} V$$

$$\eta_{V} = M_{p}^{2} \frac{\text{Min} \nabla \partial V}{V}$$

where $\operatorname{Min} \nabla \partial V =$ **minimal eigenvalue** of \hat{M} .

Proving $\eta_V < 0, -1$:

Get sign/upper bound on eigenvalue(s) of \hat{M}

Problem: 4×4 matrix \rightarrow simple information on eigenvalues? Use mathematical results...

Interesting proposal of U. H. Danielsson, G. Shiu, T. Van Riet, T. Wrase $[{\rm arXiv}; 1212.5178]$, further studied in D. Junghans $[{\rm arXiv}; 1603.08939]$:

The tachyon lies among $(\rho, \tau, \sigma_{I=1...N})$.

Claim verified in many examples. Proof of systematic tachyon? Sufficient to study $V(\rho, \tau, \sigma_I)$

D. Andriot [arXiv:1807.09698], [arXiv:1902.10093]

Introduction Existence Stability

Conclusion

Introduction Existence Stability Interesting proposal of U. H. Danielsson, G. Shiu, T. Van Riet, T. Wrase [arXiv:1212.5178], further studied in D. Junghans [arXiv:1603.08939]:

The tachyon lies among $(\rho, \tau, \sigma_{I=1...N})$.

Claim verified in many examples. Proof of systematic tachyon? Sufficient to study $V(\rho, \tau, \sigma_I)$

D. Andriot [arXiv:1807.09698], [arXiv:1902.10093]

Use mathematical results and prove: for any real $(\hat{c}_{\hat{\rho}}, \hat{c}_{\hat{\tau}}, \hat{c}_{\hat{\sigma}_1}, \hat{c}_{\hat{\sigma}_2})$ $(\hat{c}_{\hat{\rho}}\partial_{\hat{\rho}} + \hat{c}_{\hat{\tau}}\partial_{\hat{\tau}} + \hat{c}_{\hat{\sigma}_1}\partial_{\hat{\sigma}_1} + \hat{c}_{\hat{\sigma}_2}\partial_{\hat{\sigma}_2})^2 V < 0 \Rightarrow \eta_V < 0$, **instability** In addition, if $V + (\hat{c}_{\hat{\rho}}\partial_{\hat{\rho}} + \hat{c}_{\hat{\tau}}\partial_{\hat{\tau}} + \hat{c}_{\hat{\sigma}_1}\partial_{\hat{\sigma}_1} + \hat{c}_{\hat{\sigma}_2}\partial_{\hat{\sigma}_2})^2 V < 0 \Rightarrow \eta_V < -\frac{1}{\hat{c}_{\hat{\sigma}}^2 + \hat{c}_{\hat{\tau}}^2 + \hat{c}_{\hat{\sigma}_1}^2 + \hat{c}_{\hat{\sigma}_2}^2}$

→ get a **bound** on η_V . Single field interpretation of $\hat{c}_{\hat{\phi}^i} \partial_{\hat{\phi}^i}$ as **tachyonic direction**

$$\hat{c}_{\hat{\rho}}\partial_{\hat{\rho}} + \hat{c}_{\hat{\tau}}\partial_{\hat{\tau}} + \hat{c}_{\hat{\sigma}_{1}}\partial_{\hat{\sigma}_{1}} + \hat{c}_{\hat{\sigma}_{2}}\partial_{\hat{\sigma}_{2}} = \sqrt{\hat{c}_{\hat{\rho}}^{2} + \hat{c}_{\hat{\tau}}^{2} + \hat{c}_{\hat{\sigma}_{1}}^{2} + \hat{c}_{\hat{\sigma}_{2}}^{2}} \ \partial_{\hat{t}_{c}} \\ \partial_{\hat{t}_{c}}^{2} V < 0$$

Introduction Existence Stability Interesting proposal of U. H. Danielsson, G. Shiu, T. Van Riet, T. Wrase [arXiv:1212.5178], further studied in D. Junghans [arXiv:1603.08939]:

The tachyon lies among $(\rho, \tau, \sigma_{I=1...N})$.

Claim verified in many examples. Proof of systematic tachyon? Sufficient to study $V(\rho, \tau, \sigma_I)$

D. Andriot [arXiv:1807.09698], [arXiv:1902.10093]

Use mathematical results and prove: for any real $(\hat{c}_{\hat{\rho}}, \hat{c}_{\hat{\tau}}, \hat{c}_{\hat{\sigma}_1}, \hat{c}_{\hat{\sigma}_2})$ $(\hat{c}_{\hat{\rho}}\partial_{\hat{\rho}} + \hat{c}_{\hat{\tau}}\partial_{\hat{\tau}} + \hat{c}_{\hat{\sigma}_1}\partial_{\hat{\sigma}_1} + \hat{c}_{\hat{\sigma}_2}\partial_{\hat{\sigma}_2})^2 V < 0 \Rightarrow \eta_V < 0$, **instability** In addition, if $V + (\hat{c}_{\hat{\rho}}\partial_{\hat{\rho}} + \hat{c}_{\hat{\tau}}\partial_{\hat{\tau}} + \hat{c}_{\hat{\sigma}_1}\partial_{\hat{\sigma}_1} + \hat{c}_{\hat{\sigma}_2}\partial_{\hat{\sigma}_2})^2 V < 0 \Rightarrow \eta_V < -\frac{1}{\hat{c}_{\hat{\sigma}}^2 + \hat{c}_{\hat{\tau}}^2 + \hat{c}_{\hat{\sigma}_1}^2 + \hat{c}_{\hat{\sigma}_2}^2}$

→ get a **bound** on η_V . Single field interpretation of $\hat{c}_{\hat{\phi}^i}\partial_{\hat{\phi}^i}$ as **tachyonic direction**

$$\hat{c}_{\hat{\rho}}\partial_{\hat{\rho}} + \hat{c}_{\hat{\tau}}\partial_{\hat{\tau}} + \hat{c}_{\hat{\sigma}_{1}}\partial_{\hat{\sigma}_{1}} + \hat{c}_{\hat{\sigma}_{2}}\partial_{\hat{\sigma}_{2}} = \sqrt{\hat{c}_{\hat{\rho}}^{2} + \hat{c}_{\hat{\tau}}^{2} + \hat{c}_{\hat{\sigma}_{1}}^{2} + \hat{c}_{\hat{\sigma}_{2}}^{2}} \quad \partial_{\hat{t}_{c}} \partial_{\hat{t}_{c}} V < 0$$

Is there a **universal tachyon**, i.e. a fixed combination \hat{t}_c ?

Existence Stability

Conclusior

Study in IIB framework with O_5/D_5 , where 17 solutions found

D. A., P. Marconnet, T. Wrase [arXiv:2006.01848]

$$\frac{2}{M_p^2} V(\rho, \tau, \sigma_1, \sigma_2) = -\tau^{-2} \rho^{-1} \mathcal{R}_6(\sigma_1, \sigma_2) + \frac{1}{2} \tau^{-2} \rho^{-3} \left(\sigma_2^6 \sigma_1^{12} |H^{(0)_1}|^2 + \sigma_1^6 \sigma_2^{12} |H^{(2)_1}|^2 \right) - g_s \tau^{-3} \rho^{-\frac{1}{2}} \left(\sigma_1^{-4} \sigma_2^2 \frac{T_{10}^1}{6} + \sigma_1^2 \sigma_2^{-4} \frac{T_{10}^2}{6} + \sigma_1^2 \sigma_2^2 \frac{T_{10}^3}{6} \right) + \frac{1}{2} g_s^2 \tau^{-4} \left(\rho^2 (\sigma_1 \sigma_2)^{-2} |F_1|^2 + |F_3|^2 + \rho^{-2} (\sigma_1 \sigma_2)^2 |F_5|^2 \right) \mathcal{R}_6(\sigma_1, \sigma_2) = R_1 \sigma_1^{-8} \sigma_2^4 + R_2 \sigma_1^4 \sigma_2^{-8} + R_3 \sigma_1^4 \sigma_2^4 + \dots$$

$$\rightarrow \text{ go to canonical basis } \phi^i \rightarrow \hat{\phi}^i$$

$$\mathcal{S} = \int \mathrm{d}^4 x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{M_p^2}{2} \left((\partial \hat{\rho})^2 + (\partial \hat{\tau})^2 + (\partial \hat{\sigma}_1)^2 + (\partial \hat{\sigma}_2)^2 \right) - V \right)$$
with $V(\hat{\rho}, \hat{\tau}, \hat{\sigma}_1, \hat{\sigma}_2)$

Result: **no universal tachyon** (for all 17 solutions) Rather: several different

Similar to existence no-gos: here, parameter space (partially) covered by different assumptions capturing different stability no-go theorems and corresponding tachyons.

Introduction Existence Stability

Conclusior

Introduction Existence Stability Result: **no universal tachyon** (for all 17 solutions) Rather: several different

Similar to existence no-gos: here, parameter space (partially) covered by different assumptions capturing different stability no-go theorems and corresponding tachyons.

We find 13 (interesting) sufficient conditions C1 - C13 for tachyons. For example: C7

 $\frac{439}{4}g_s^2|F_1|^2 + \frac{421}{4}g_s^2|F_3|^2 + \frac{439}{4}g_s^2|F_5|^2 - 72R_3 - \frac{1675}{96}g_sT_{10} + \frac{3}{2}g_sT_{10}^3 \le 0$ \leftrightarrow sufficient condition for a tachyon on dS extremum with

$$c_{\sigma_1} = c_{\sigma_2} = 1 \ , \ c_{\rho} = \frac{7}{2} \ , \ c_{\tau} = \frac{9}{2}$$

Obeyed by 14 of the 17 solutions with O_5/D_5 . No universal condition obeyed by all known solutions.

Introduction Existence Stability Conclusion Result: **no universal tachyon** (for all 17 solutions) Rather: several different

Similar to existence no-gos: here, parameter space (partially) covered by different assumptions capturing different stability no-go theorems and corresponding tachyons.

We find 13 (interesting) sufficient conditions C1 - C13 for tachyons. For example: C7

 $\frac{439}{4}g_s^2|F_1|^2 + \frac{421}{4}g_s^2|F_3|^2 + \frac{439}{4}g_s^2|F_5|^2 - 72R_3 - \frac{1675}{96}g_sT_{10} + \frac{3}{2}g_sT_{10}^3 \leqslant 0$

 \leftrightarrow sufficient condition for a tachyon on dS extremum with

$$c_{\sigma_1} = c_{\sigma_2} = 1 \ , \ c_{\rho} = \frac{7}{2} \ , \ c_{\tau} = \frac{9}{2}$$

Obeyed by 14 of the 17 solutions with O_5/D_5 . No universal condition obeyed by all known solutions. What about **bound on** η_V ? Existence: different conditions on ϵ_V but a universal bound: $c \ge \sqrt{\frac{2}{3}}$.

Introduction Existence Stability Conclusion Result: **no universal tachyon** (for all 17 solutions) Rather: several different

Similar to existence no-gos: here, parameter space (partially) covered by different assumptions capturing different stability no-go theorems and corresponding tachyons.

We find 13 (interesting) sufficient conditions C1 - C13 for tachyons. For example: C7

 $\frac{439}{4}g_s^2|F_1|^2 + \frac{421}{4}g_s^2|F_3|^2 + \frac{439}{4}g_s^2|F_5|^2 - 72R_3 - \frac{1675}{96}g_sT_{10} + \frac{3}{2}g_sT_{10}^3 \leqslant 0$

 \leftrightarrow sufficient condition for a tachyon on dS extremum with

$$c_{\sigma_1} = c_{\sigma_2} = 1 \ , \ c_{\rho} = \frac{7}{2} \ , \ c_{\tau} = \frac{9}{2}$$

Obeyed by 14 of the 17 solutions with O_5/D_5 . No universal condition obeyed by all known solutions. What about bound on η_V ? Existence: different conditions on ϵ_V but a universal bound: $c \ge \sqrt{\frac{2}{3}}$. Here: C7 bound: $\eta_V \le -\frac{8}{567} \approx -0.0141093$ Bounds range: $\left[-\frac{4}{3}, -\frac{25}{3422}\right] \approx \left[-1.33333, -0.00730567\right]$ \rightarrow not conclusive for phenomenology nor swampland...

- \Rightarrow different parts of a parameter space!
- \hookrightarrow Solutions **counter-examples?** Violate assumptions...

Introduction Existence Stability

Conclusio

Introduction Existence Stability \Rightarrow different parts of a parameter space!

 \hookrightarrow Solutions counter-examples? Violate assumptions... Condition C11, obeyed by 16 solutions on 17 with O_5/D_5 $-2R_3(g_s^2|F_1|^2 - \mathcal{R}_4) - g_s^2|F_1|^2\mathcal{R}_4 < 0$

 \hookrightarrow search for solutions violating this condition

Introduction Existence Stability ⇒ different parts of a parameter space! \hookrightarrow Solutions **counter-examples**? Violate assumptions... Condition C11, obeyed by 16 solutions on 17 with O_5/D_5 $-2R_3(a_c^2|F_1|^2 - \mathcal{R}_4) - a_c^2|F_1|^2\mathcal{R}_4 < 0$

 \hookrightarrow search for solutions violating this condition

- \hookrightarrow we obtain 10 new de Sitter solutions, new physics
 - New solutions on compact \mathcal{M} with η_V up to -0.90691.
 - One solution with $\eta_V = -0.12141!$ Compact $\mathcal{M}!$

D. Andriot, L. Horer, P. Marconnet, work in progess

• One solution with $\eta_V = 3.7926!$ But \mathcal{M} non-compact. Still, first "stable" (geometric) solution of this kind \Rightarrow compactness plays a role in proof...

 \hookrightarrow look in the **remaining regions** to find new interesting examples...

Tachyonic directions of solutions and no-gos

Existence Stability

Conclusion

black: 17 old sol.; green + blue: 10 new sol.; others: no-gos

Introduction Existence Stability Conclusion Conclusion

Existence, stability of classical dS string backgrounds?

For both existence and stability: formalism and methods to get formal constraints **Several no-go theorems** that cover partially parameter space: \rightarrow no de Sitter solution, instability.

For both: **remaining regions** to explore: to find (classical?) de Sitter solutions, (stable?)

Difference between existence and stability: **bounds**:

$$\epsilon_V \ge \frac{1}{3}$$
, $\eta_V </math$

 \hookrightarrow good for TCC? Good for phenomenology?

Hope (to investigate in remaining regions):

Classicality \leftrightarrow stability (less unstable/small $|\eta_V|$)

 \hookrightarrow find classical de Sitter solution with $\eta_V = -0.01$?

Introduction Existence Stability Conclusion

Introduction Existence Stability

Conclusion

Hope (to investigate in remaining regions):

Classicality \leftrightarrow stability (less unstable/small $|\eta_V|$)

 \hookrightarrow find classical de Sitter solution with $\eta_V = -0.01$?

Anti-de Sitter: strong ADC / no scale separation:

 $m^2 \sim |\Lambda| \quad \leftrightarrow \quad |\eta_V| \sim 1$

F. F. Gautason, V. Van Hemelryck, T. Van Riet [arXiv:1810.08518]

D. Lust, E. Palti, C. Vafa [arXiv:1906.05225]

DGKT: violate this \rightarrow allows more classical

O. DeWolfe, A. Giryavets, S. Kachru, W. Taylor [hep-th/0505160]

B. S. Acharya, F. Benini, R. Valandro [hep-th/0607223]
David ANDRIOT

Introductior Existence Stability

Conclusion

Hope (to investigate in remaining regions):

Classicality \leftrightarrow stability (less unstable/small $|\eta_V|$)

 \hookrightarrow find classical de Sitter solution with $\eta_V = -0.01$?

Anti-de Sitter: strong ADC / no scale separation:

 $m^2 \sim |\Lambda| \quad \leftrightarrow \quad |\eta_V| \sim 1$

F. F. Gautason, V. Van Hemelryck, T. Van Riet [arXiv:1810.08518]

D. Lust, E. Palti, C. Vafa [arXiv:1906.05225]

DGKT: violate this \rightarrow allows more classical

O. DeWolfe, A. Giryavets, S. Kachru, W. Taylor [hep-th/0505160]

B. S. Acharya, F. Benini, R. Valandro [hep-th/0607223]

Thank you for your attention!