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Single-Field Inflation in String-Theory?

To embed single-field slow-roll inflation into string- or M-
theory, take your favorite model, use the available fluxes
and non-perturbative effects and stabilize all moduli ex-
cept for one, ¢.

Since the aim is to derive a single extremely flat ¢ di-
rection, the masses of the stabilized moduli should be
heavier than the one for ¢, such that we can integrate
these moduli out and remain with an effective potential

Ulp)-

To see whether the resulting U(y) is flat enough to give
rise to a period of inflation which is long enough (50-60
e-foldings usually), you have to check that both
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While the e condition is typically easy to satisfy, the con-
trary is true for the n constraint and hence developed
into the

Eta-Problem = Inflaton-Mass Problem
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Various proposals for its solution were made (warp fac-
tors, shift symmetries, etc.) but when analyzed carefully
the problem persists [see e.g. McAllister hep-th/0502001]-

— Let’s try to embed inflation into string- and M-
theory through muiti-field inflation (more natural in
* view of the multitude of scalars)?

Power-Law and Assisted Inflation

To this end, let us emphasize that there are are various
different types of inflation through which one might try
to embed inflation into string-theory:

New Inflation: is based on a vacuum energy dominated
de Sitter expansion for which

a(t) = age™"

Many efforts concentrated on embedding inflation into
string-theory via new inflation (or hybrid inflation)

Power-Law Inflation: [Lucchin, Matarrese 1985]
relies on an exponential potential

U(‘P) o Uot‘i“\/%ﬁ?"”—I




with parameter p > 1 leading to a scale-factor
alt)— aptt
and an evolution of the inflaton
Uy t )
t) = \/2pMp; In
ot A ( p(3p — 1) Mpy

(solution is valid for p > 1/3 but inflation arises only if
p>1sd>0)

power-law inflation implies very simple constant slow-
roll parameters
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constant slow-roll parameters mean there is no exit from
power-law inflation. When embedded into M/string the-
ory this presents, however, no problem as additional
contributions will eventually modify the simple exponen-
tial potential causing inflation to end.

exponential potentials arise naturally from various non-
perturbative effects which need to be included anyway
for moduli stabilization (and spontaneous supersymme-
try breaking)




Single D-brane or Membrane instantons lead however
to p = O(1) which is not sufficient for a sustained period
of inflation!

So what can be done to obtain inflation nevertheless?

Assisted Inflation: [Liddle, Mazumdar, Schunck 1998]
consider instead a multi-inflaton extension of the single
scalar power-law inflation scenario, termed assisted in-
flation

each of the N scalar fields ¢;, ¢ = 1,...,N, has a po-
tential
- 42
B e i

(for p = O(1) as in M/string theory, individual potentials
too steep to give power-law inflation) Since all scalars
obey identical dynamics, one can map this multi-field
problem by rescaling to the single field power-law prob-
lem and show that it gives again a power-law solution

a(t) = agtf (V)
but this time with
p(N)= Np

= even though single exponential contributions are too
steep to support inflation individually, it is easy to
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obtain large p(IN) > 1 by increasing N

— this mechanism gives inflation with small ¢, by us-
ing many exponential potentials which would usually be
discarded as too steep when considered individually (in-
creased Hubble-friction experienced by every individual
scalar)!

s it possible to embed inflation via the method of as-
sisted inflation into M/string-theory, thereby using the
naturally available “too steep” potentials?

Realizing Assisted Inflation in M-Theory
[K.& M. Becker, AK '05]

1) The Multi M5-Brane Potential

For definiteness and because of its direct contact with a
realistic GUT or MSSM sector [see e.g. B. Ovrut et al. '04]
— which is important for the issue of reheating —we will
focus subsequently on heterotic M-theory.

When compactified down to 4d on a 6-dim. manifold preserving N = 1 superf-
symmetry, background is given either by a warped Calabi-Yau threefold or a
warped non-Kahler manifold depending on type of flux. But warp-factor along
S!/Z, stays the same [Curio, AK 2000, 2003]




Let's focus on the CY case and consider the follow-
ing setup of NV parallel M5-branes distributed along the
S!/Z, interval (all M5-branes fill 4d spacetime and wrap
same genus zero holomorphic 2-cycle on the CY; for
simplicity k" = 1, i.e. one Kéhler modulus T' only.

oo

Moduli and Kahler-Potential

effective 4d N=1 supergravity is described in terms of

e h2! complex structure moduli Z*

e CY volume modulus S

e T modulus measuring S*/Z, length
e M5-brane position fields Y;

defined as
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where

e V = average CY volume over S'/Z;

e Vou = average volume of 3-cycle ¥, x S'/Z,
e L = length of S!/Z, interval

e 0 < z!! < L: position of the ith M5-brane

in addition it’s useful to define

D —

s=8+85, t=T+T, yu=Y;+Y,

y = (i yf) 5
=1

plus

2
=7
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such that the Kahler-potential becomes




)26 — K(S) = K(T) - K(y) = K(Z)
where
Ks) + K(y) =—In@

d
Ky =—n(5t)

K(Z) = —In (’b /Cyﬂ /\ﬁ),

(d = CY intersection number)

Obviously Q = 2V > 0; likewise R > 0 to ensure a
positive definite Kahler metric K7 for which one finds
(I,J,... run over all complex moduli, G,; = metric on
the complex structure moduli space)

_ 16R

Which Superpotentials Need to be Considered?

a priori contributions to superpotential come from open
membrane instantons (wrapping same genus zero
curve as M5’s) stretching between:

e both boundaries (99),

« between two of the M5-branes (55),

« between the visible boundary and an M5-brane (95)

« or between an M5-brane and the hidden boundary (59)
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Wou = Wag + Wis + Wos + Wig

where
N N
Wee = he™", Wos="h Z e, Wso=h Ze”(T"Yf)
=1 i=1

Wes=h ) e
1<J
with
e
describing the distance between the jth and the ith MS-
brane

When T would have been stabilized at the critical length
(Curio, AK 2001; M. Becker, Curio, AK 2004] Where volume (gauge
coupling) of hidden boundary becomes small (large),
then one would also consider gaugino condensation on
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hidden boundary

D 'YiYi2
T b

ol
Wae = —-CHM?"S el ; =0 tnl+

(Cy = dual Coxeter number of hidden gauge group,
u = ultraviolet cut-off scale, ypi = ﬁh,iﬁv%({;)z/ : fE w,
where w = CY Kabhler form and V, CY volume of visible
boundary; 5; = 1 and B, € Z obtained as expansion
coefficients of 2nd Chern classes of hidden boundary
vector F, and tangent bundle TX: cy(Fi) — 5c2(T'X) =

Br[X2))

Via a perfect square structure within the heterotic M-
theory action, gaugino condensation implies a non-
vanishing NS 3-form flux H of type (3,0) + (0,3) on the
hidden boundary [Horava 1996]. Hence, flux superpotential
[Gukov, Vafa, Witten 1999; Gukov 1999]

Wy = HAQ
Chy

is induced on hidden boundary

Here, however we will start at subcritical distances!

(ap < 1/2H L < 0.72L.) Only towards the end of inflation
T will grow towards 7. and at this time gaugino conden-
sation and the induced H flux need to be included and
will stabilize S and 7" moduli.
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Among the open membrane contributions, we can focus
on the dominant nearest neighbor 55 contributions. This
is correct as long as nearest M5 brane distances are
smaller than the orbifold size implying that the neglected
OM instantons have to stretch over longer distances.
Hence

W = Wss

M5-brane Interaction Potential

Potential follows from standard F-term expression
U= Mpe" (Z K DiW 55D Wss — 3|W5512) :

which leads to

U
Mioe*

= G’ DaWssDgWss

N
+Qt Zl (";'5153‘ g }%%%) D;Ws5D;Wss
i,j=

with Kahler factor ek = 6/(i [ Q A Q)Qtd
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the only term which in principle could become negative
is the last term which arises from

S KKK |Wes|® - 3| Ws|”

It is however easy to check that 3Q*/R > 2y2/Qt when
Q@ >0and R > 0, as required for a positive definite
Kahler metric. Hence this term and therefore the whole
potential will be positive —an important requisite for the
derivation of assisted inflation!

2) Mapping M5-Brane Dynamics to
Assisted Inflation Dynamics

Since M5-brane interaction potential is positive we can
partially minimize it by demanding

DaW55 = 0

DiWss =0
Let us see what they imply. The first equation is equiva-
lent to

8111h - _6K(Z)
dZ¢  0Z-°
and implies
h:i/ QAQ
CY

It will fix the h2! complex structure moduli
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The second equation has a simple geometric meaning:
in the large volume regime, where we can trust the su-
pergravity analysis, we have Qt ~ st >t > y; and
therefore

2y;
= D@W55 = W55,§ + "C—;"EWSS o W55,i
With
N-1
Wis = h Z e~ Yitli
=1
this implies

}/'i+1,i =AY Wi

Hence partially minimizing the energy through setting
D;Wss = 0 forces the inter M5-brane distances to be
equidistant

Specifying the Regime where Inflation Occurs

So far, by partially minimizing the energy, we have ar-
rived at |

3Q 2’92 2
9w

If this potential is to be mapped to an assisted inflation

dynamics with the inflatons arising from the M5-brane
position differences yi+1 — yi, We have to make sure that

v
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there is a y; dependence only in the exponentials of Wss

can be achieved by working in the regime where
Qt >y’

which is consistent with large volume @ ~ s > 1 and
implies 3Q/Rt* > 22/Q**. In this regime we simply
have

1 2
| U x ——-St3|W55|
and therefore finally

Ud _(N=1? 4,

T . Ay=AY +AY
6ML(G [QAQ) 8P Z

The Mapping

1) Transformation to canonically normalized scalars:
Y; kinetic term
Skin — _MI%l f d4$‘\/ —gKija#Y.,;a"?j— y
where
 dyiy; + 2Q10i
= Q22 '
In the regime which we had just specified, we have
Ot > 2 = Y u? > yy;. Thus (under the sum) we can
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neglect the first piece and obtain K;; = 24;;/Qt which
leads to the following canonically normalized real M5-
brane position and difference fields

_ 2Mp 2Mp

¢‘£ s _\/_'é—?y‘ia \/Q?

Ap = Ay

2) Switching to COM and Relative Coordinates:

A potential is only generated for distances between ad-
jacent M5-branes but not for their combined com posi-
tion. Let us therefore switch from the N position fields
#; to the more adequate description in terms of the M5-
brane com field

Bom = (D1 -+ 9)

and the difference field A¢. The relation between the
two sets of fields is provided by the relation

bi = o+ (1=~ ) A0

Since there is no potential for ¢.m, its value will stay
constant and its kinetic term vanishes. The sum of the
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#; kinetic terms then becomes

N N N .2
%Z 0,$:0"p; = 0,L90" A Z (Z B 2+ 1)
= =
- N(N2 L 1)6UA¢(9#A¢

requiring us to perform a second renormalization

Eventually, we arrive at the final canonically normalized
difference field ¢

7 2
Q= \/N(N6 1)A¢> = Mpz\FN(%t . 1)Ay

in terms of which the potential reads

o 3
U(p) = Up(N — 1)% v

with Uy, = 6M%,(i [Q A Q)/st’d (the approximate con-
stancy of s, t will be discussed shortly)

For a spatially flat 4d FRW universe we then have a
Hubble parameter

e L

- (U@ +3¢)

and the dynamics of ¢ is determined by

dU
¢+3Hp+—=0.
de
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This is precisely the dynamics which gives power-law
inflation once we identify the parameters

_4N(N?-1)
S 3t
Uy = Up(N — 1)°

This completes the mapping and therefore embedding
of assisted inflation into M-theory.

Bounds on N
Contrary to what one might think, the value for N is
rather constrained
1) We had the condition
Qt > v

which implies an upper bound on NV as y grows with N.
For typical values V = 341, Vo = 7 and z;'/L = O(1 /2)
we have s = 682 + 3.5N, t = 14,y ~ 49N which leads to

N < 195
2) to obtain inflation we need p > 1 which implies a lower
bound on N
p>1 & 4AN(N*—-1)>3Qt
For the same s, t values as before we get
19< N
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There is thus a non-empty set of N'’s satisfying both
constraints. Moreover also observational constraints
coming from the number of e-foldings or the scalar
spectral index require values for N within same range!

Moduli Stabilization

There is a crucial difference between new inflaton mod-
els and this assisted inflation model for the embedding
into M/string-theory

New inflaton models have to select a single very flat di-
rection. Necessarily one has to stabilize all other moduli
before inflation.

Here, we have made use of the very steepest directions
available. The universe is rolling down exponentially
steep directions during inflation

U(}?is Mﬁ)
U(M, M,)




Hence, this alleviates considerably task to stabilize all
(up to one) moduli before inflation. Mild, i.e. power-law
runaways might be tolerable (s, t)

The Whole Evolution: Cascade Inflation -

So far we have kept N = # of M5-branes fixed and an-
alyzed therefore only part of the full process. Since the
M5-brane distances are growing N will jump to N —2
as soon as the two outermost M5-branes hit the bound-
aries |

This can also be seen from the anomaly cancellation
equation for the G flux

ﬁ'v‘{'ﬁh‘l’N:O

(B, are integers characterizing the boundary’s 2nd
Chern classes). When the M5-branes coalesce with
the boundaries they change the boundaries topologi-
cal data via small instanton transitions which has to be
compensated for by a change in N

Hence, we have the following “cascade-like” evolution:
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N

N-2

e N-2(g—-1)=N,

! .

= _h

Aml TS AIQ 4 __NA_E o L
¢+l = No—1
1. phase 2.phase. ... g.-phase = ......
>t
t1 ta - tq—l tq ......

For each interval we obtain power-law inflation via the
same derivation as before, as long as

p(N,) > 1 (Exit Condition : p(Ng) = 1)
(2nd constraint Qt > y* always remains satisfied as y
decreases with decreasing N)

The full “cascade inflation” process has the following
structure

aftl =at®, Ht=t

ap(t) =agt?, t1<t<te

ag(t) =agtht, t1 Sty

Matching them at the transition times t, determines the
constant prefactors

D2 p3 Dg—
aqzaltg’l(i%) (Pé) ...(tq—l)qllq
b/ NG e th




Number of E-Foldings

with

the constant ratios t,/t,—1 can be determined by using
the exact solution for the inflaton (distances between
adjacent M5-branes) evolution

G e 0 Zq: Pa(3Pa — 1) y(2ga_ 221
Mn Ma = Na—l

1 Zpa(3pa ¥ 1)6t(N&1?*T_N£1_**T)
\ (jO a1 Na' —1

Taking typical values for s,t as before, this series can
be summed numerically.

Exit from Inflation: p(Ng;) 21 = Ny, =19

Knowing N,,, we can carry out the summation and ob-
tain




= N, =133
= N, = 28.6
= N, = 53.2
= N, = 89.7

— Since 19 < N K 195, we se€ that a realistic

N, = 50 — 60 can be obtain

ed within required regime!
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Conclusion

> Cascade Inflation offers a direct way to obtain a
small 7 (for power-law inflation € = I:.?’ n= %}

> able to account for a realistic number of e-foldings
in the regime where derivation is valid and inflation
takes place

> study of small instanton phase transitions important
for reheating (cosmic strings?)




