Problems

Sheet 2, 10.11.2005

Problem 1: Feynman Rules

Determine the Feynman Rules of the following theories:

a) QCD (in R_{ξ} -gauge):

$$\mathcal{L}_{QCD} = -\frac{1}{4} (F^a_{\mu\nu})^2 - \frac{1}{2\xi} (\partial^{\mu} A^a_{\mu})^2 + \bar{\psi} (i \not\!\!\!D - m) \psi + \bar{c}^a (-\partial^{\mu} D^{ac}_{\mu}) c^c ,$$

where $D_{\mu}=\partial_{\mu}+igT^{a}A_{\mu}^{a}$ and $D_{\mu}^{ac}=\delta^{ac}\partial_{\mu}-gf^{abc}A_{\mu}^{b}$.

b) Pion Chiral perturbation theory at leading order with photon coupling:

$$\mathcal{L}_2 = \frac{F_\pi^2}{4} \operatorname{Tr}[(D_\mu U)(D^\mu U^\dagger)] + \frac{F_\pi^2}{4} \operatorname{Tr}[U^\dagger \chi + \chi^\dagger U] ,$$

where

$$D_{\mu}U = \partial_{\mu}U - (ieA_{\mu}Q)U + U(ieA_{\mu}Q) ,$$

$$U = \exp\left[\frac{i\sqrt{2}}{F_{\pi}}\begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} & \pi^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} \end{pmatrix}\right] ,$$

$$\chi = 2B\begin{pmatrix} m_{u} & 0 \\ 0 & m_{d} \end{pmatrix} , \quad Q = \begin{pmatrix} \frac{2}{3} & 0 \\ 0 & -\frac{1}{3} \end{pmatrix} .$$

Determine the pion propagators, the pion-photon coupling and the $\pi^+\pi^0 \to \pi^+\pi^0$ vertex.

What is the dimension of F_{π} ?

What is the power counting of this theory?

Problem 2: Dimensional Regularization

a) Determine the UV-divergent $\frac{1}{\epsilon_{UV}}$ contribution of the integral in $d=4-2\epsilon$ dimensions

$$\int \frac{d^d q}{(2\pi)^d} \frac{1}{(q^2 + i\epsilon)^2}$$

for $\epsilon \to 0$.

b) Calculate

$$B_0(\alpha, \beta, p^2) = \int \frac{d^d q}{(2\pi)^d} \frac{1}{[q^2 + i\epsilon]^\alpha [(q+p)^2 + i\epsilon]^\beta}$$

for arbitrary d.