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Outline

Darker than Vacuum: Local Violations of Energy Positivity

Gravitation: Energy Conditions in Classical and Semiclassical Gravity

– Singularities vs Causal Pathologies

QEIs : Limitations on Local Energy Positivity Violations,

Quantum Energy Inequalities,

Dynamical Stability of Quantum Systems

Gravitation: QEIs versus Causal Pathologies,

Time Machines, Wormholes, Warp-Drive ??

Current (Open) Issues and some speculations on the relevance for cosmology
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Local Violations of Energy Positivy

Classical Physics (Classical field Theory):

Energy of a (closed) system in a state ξ ( ↔ field configuration, solution of eqns of motion) is
given as

E[ξ] =

∫

space
̺ξ(t,x) dµ(x) ≥ 0

♦ ̺ξ(t,x) ≥ 0 energy density

♦ dµ(x) some positive measure on config. space

Quantum Physics (QFT):

For a state 〈 . 〉ψ = 〈ψ, .ψ〉 of the system, the expected total energy is

〈H〉ψ =

∫

〈̺(t,x)〉ψ dµ(x) ≥ 0

♠ 〈̺(t,x)〉ψ expected energy density can take both signs!

This occurs also for other density-like quantities in quantum physics!
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Energy density in QFT, 1

Epstein, Glaser, Jaffe (1965):

In a Wightman-QFT where the Energy-Momentum-Tensor Tµν (t,x) is a local quantum field
with

〈H〉ψ =

∫

space
〈T00(t,x)〉ψ dx ,

it is necessary that 〈T00(t,x)〉ψ takes negative values for some spacetime-points (t,x)

and states ψ.

Fewster (2005):

If the QFT possesses scaling limits with positive canonical dimension at each (t, x), then
〈T00(t,x)〉ψ is unbounded below, i.e. there is a sequence of vectors ψn , 〈ψn ,ψn〉 = 1,
so that

〈ψn , T00(t,x)ψn〉 → −∞ (n→ ∞) .
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Energy density in QFT, 2

Simple argument for energy positivity violation:

Assume:

• T00(f)Ω 6= 0 for test-function f 6= 0

• 〈Ω, T00(f)Ω〉 = 0

for Ω = vacuum− vector; then ψα = cosαΩ + sinα
||T 00(f)Ω||

T00(f)Ω

=⇒ 〈ψα , T00(f)ψα〉 = ζ sin 2α+ η(1 − cos 2α)

with ζ = ||T00(f)Ω||

=⇒ inf
α

〈ψα, T00(f)ψα〉 = η−
√

η2 − ζ2 < 0
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Casimir-Effect

Two parallel (conducting) plates are subject to a distance-dependent attractive force

similar: plate-sphere system

µ~  0,1...1,0     ma a

F(a)

plate-plate system:

F (a)/A = π
2

~c

240·a4

measurements:
Sparnaay 1958 (±100%),
Bressi et al. 2002 (±15%)

plate-sphere system:

F (a)/A = π
3

~cR

360·a3

measurements:
Lamoreaux, PRL 78:1997 (±1%), Mohideen
et al., PRL 81:1998

F(a)voraus!

Bei  einer Sphäre sagt
die  Theorie eine
expandierende Kraft a
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Casimir-Effect

The "Casimir-vacuum" has a negative energy density compared to the global
Minkowski-vacuum state
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"Darker than Vacuum" states in Quantum Optics

In quantum optics:

Superpositions of vacuum + 2 photon states (2-photon coherent states) have been produced
where the energy density ∼ 〈: E2 : (t,x)〉 is lower than the vacuum value.
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Gravity

Space-Time structure: a Lorentzian manifold M , g

• M : 4-dim manifold, “catalogue of events”

• g : Lorentzian metric, describes motion of light and matter

Einstein’s field eqns of gravity:

curvature terms of metric
describe gravity Rµν (x) −

1

2
gµν (x)R(x) =

8πG

c2
Tµν (x)

energy-momentum tensor
of matter/energy distribution

Fundamental proposition of Einsteinian
gravity:

“Presence of energy/matter curves
spacetime geometry, spacetime curvature
determines motion of energy/matter”

Analogie:  Massenkugel auf Gummimembran

Ohne Anwesenheit von Masse,
Raumzeit ohne Krümmung

Testteilchen "folgt der Krümmung"
bewirkt Krümmung
Anwesenheit einer MasseTestteilchen  kräftefrei
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Classical Gravity

Qualitative behaviour of solutions to Einsteins eqns of gravity:

ρclass(t,x) = T00(t,x) ≥ 0 positivity of energy density of classical matter/radiation

=⇒

Gravity is always attractive

Black holes appear generically as final states of large matter aggregates

More generally: Spacetime singularities occur generically

Absence of causal pathologies, e.g.

❐ “Time machines” ↔ spacetimes with closed timelike curves

❐ “Superluminal travel” ↔ “Designer-spacetimes”
with wormholes or warpdrive-metrics
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“Time machine” — Tipler’s rotating cylinder

y

z

x

y

t

x
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faster travel by wormhole

Schneller Reisen mit Wurmloch

A

B

A

B
,

zusätzlicher Raumdimension

ZeitM M

Wurmloch = "Tunnel" in

,
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faster travel by warpdrive
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faster travel by warpdrive
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faster travel by warpdrive

Schneller reisen mit "Warp−drive"

Zeit

Raum
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faster travel by warpdrive
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QFT – global stability

pointwise quantities like expectation values of energy densities

〈̺(t,x)〉ψ

no longer positive (typically even unbounded from below as function of the state)

The dynamical evolution of a quantum field system is determined by a
Hamilton operatorH with respect to an inertial frame,
and one demands that the system fulfills the

principle of global dynamical stability:

H ≥ a lowest eigenvalue E0

and

existence of a ground state Ω0 (“vacuum”)

with respect to every global inertial frame.

Remark: This is typical for elementary systems on Minkowski spacetime
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QFT – global stability?

in curved spacetime (presence of classically described gravitational fields):

for quantum fields there is in general no unambiguous global Hamiltonian describing
the dynamics (non-existence of global inertial frames)

→ how to formulate dynamical stability?

→ the concepts of “particle” oder “vacuum” are observer-dependent!

Unruh-Effekt: an observer with constant
acceleration registers the inertial vacuum
state as thermal ensemble at temperature

Ta =
~a

2πkBc
, a = acceleration

x

x0

1
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QFT – microlocal stability

For QFT on general curved spacetimes, there are local replacements of the principle of local
stability,

⋆ microlocal spectrum condition (µSC)

⋆ quantum energy inequalities (QEIs)

microlocal spectrum condition:
The spectral high-energy bevavour of the correlation functions of a quantum field ΦM
on an arbitrary spacetime M ,

〈ΦM (x1) · · ·ΦM (xn)〉ψ ,

shall — infinitesimally close to the spacetime points x1, . . . ,xn — coincide with the
spectral high-energy behaviour of a quantum field Φ0 on Minkowski spacetime.

(This condition is formulated mathematically precisely with the methods of microlocal
analysis.)

– p. 19/31



Local Thermal Equilibrium States

A new condition proposed by Buchholz-Ojima-Roos (2001), Buchholz (2003),
Buchholz-Schlemmer (2006):

Local Thermal Equlibrium States (here simplified):

Let Φ be the quantized linear scalar field on a spacetime (M, g).

A state ω is a 2nd order LTE-state at x ∈M if:

ω(: Φ2 : (x)) and lim
y→x

(∇x∇x − ∇x∇y − ∇y∇x + ∇y∇y) [ω(Φ(x)Φ(y)) − ηM (x,y)]

coincides (at x) with the corresponding quantities of a thermal equilibrium (KMS) state at
inverse temperature β = β(x) on Minkowski spacetime.

ω(: Φ2 : (x)) = lim
y→x

(ω(Φ(x)Φ(y)) − ηM (x,y))

with

ηM = symmetric Hadamard parametrix
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QFT – local stability

quantum energy inequalities:
For a quantum field ΦM (x) on an arbitrary spacetime M with energy density ρΦ(x)

it is required:

∫

γ
〈ρΦ(s)〉ψf

2(s)ds≥ cγ (f) >−∞

for all states ψ, timelike curves γ, andC∞
0 -weighting functions f ≥ 0.

I.e.: the averaged energy density of the quantum field along arbitrary timelike curves
should possess state-independent lower bounds.

limiting case: ANEC = Averaged Null Energy Condition

lim inf
λ→0

∫

γ
〈ρΦ(s)〉ψf

2(λs)ds ≥ 0

Question:

How do µSC and QEIs relate to each other? Do they correspond to the principle of global
stability on spacetimes with global time symmetry?
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QFT – dynamical stability at three scales

microlocal spectrum condition

ground states
or passive states

QEIs

existence of

general spacetimes
 linear quantum fields

dynamical systems on static,
spatially closed spacetimes

stationary 
spacetimes,
linear quantum
fields

[ C.J. Fewster, H. Sahlmann, R. Verch ]
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QEI variants

The EMT of a quantum field ΦM (x) on a spacetimeM is defined in the form

〈: Tµν : (x)〉ψ |ϕ = lim
y→x

∑

P

〈(PΦM )∗(x)(PΦM )(y)〉ψ − 〈(PΦM )∗(x)(PΦM )(y)〉ϕ

QEIs for weighted averages of

〈: Tµν : (x)〉ψ |ϕ

have ψ independent lower bounds depending on the reference state ϕ.
Such QEIs are called difference QEIs.

One can define 〈: Tµν : (x)〉ψ |ϕ choosing instead of a refence state ϕ a functional ηM
constructed locally from the geometry of the spacetimeM (the choice of ηM is canonical).
Then the weighted averages of

〈: Tµν : (x)〉ψ |ηM

have lower bounds depending only on the local geometry ofM, i.e. on the metric and
curvature quantities.
Such QEIs are called absolute covariant QEIs.
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QEI results

Difference QEIs have been derived in various forms of generality for the quantized
Klein-Gordon field, Dirac field, and free E.M. field on Minkowski spacetime and general
globally hyperbolic spacetimes (as consequence of the µSC).
[ L. Ford, T. Roman, M. Pfenning, C.J. Fewster, S. Eveson, C. Smith, E. Flanagan, D. Vollick, R.

Verch ]

Absolute covariant QEIs have recently been developed for the quantized Klein-Gordon
field on general globally hyperbolic spacetimes
[ C.J. Fewster, C. Smith, M. Pfenning ]

Absolute, sharp QEIs have been obtained for chiral conformal quantum field theories
in 1 + 1 dim. Minkowski spacetime
[ C.J. Fewster and S. Hollands ]

Difference QEIs have been applied to the squeezed “darker than vacuum states”
considered in quantum optics, with the conclusion that there are bounds on the
(magnitude × duration) of energy negativity.
[ P. Marecki ]

(Note: Detection of “darker than vacuum” states rests on homodyne detection – there
is much room for further investigation...)
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more QEI results

Absolute QEIs hold for LTE (local thermal equilibrium) states of the linear scalar field

(∇a∇a + ξR+m2)Φ(x) = 0

with arbitrary conformal coupling ξ.

The lower bound cγ (f) depends on the maximal local temperature

1

β0
= max

x

1

β(x)

attained by the states along the curve, so the QEIs hold for sets of states having
bounded (local) temperature.

Remark: Fewster and Osterbrink (2007) have shown that QEIs do not hold in general if
ξ 6= 0.

ANEC for LTE states: ANEC holds for LTE states for ξ = 0 (always) and for ξ = 1/4

and 1/8 if temperature increase along (complete) lightlike geodesics sufficiently
bounded.
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Semiclassical Gravity

Rµν (x) −
1

2
gµν (x)R(x) =

8πG

c2

(

Tklass,µν (x) + 〈: Tµν : (x)〉ψ
)

is the semiclassical generalization of Einstein’s equations.

dynamical stability admits that

inf
states ψ

〈: ρΦ : (x)〉ψ = −∞

at each point x of spacetimeM.

Hence, spacetime geometries with causal pathologies like

• time-machine scenarios • wormholes • warp-drive metrics

could occur as solutions to the semiclassical Einstein–equations.

Question:
Can they really occur for a suitable choice of state ψ?
Are they realistic? At which scale?
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Dynamical stability inhibits causal pathologies

ad “time machines”:

In QFTs obeying the microlocal spectrum condition, solutions to the semiclassical
Einstein-equations cannot possess closed timelike curves.
[ B. Kay, M. Radzikowski, R. Wald ]

ad wormholes:

Difference QEIs imply considerable constraints for the possibility of macroscopic traversable
wormholes as solutions of the semiclassical Einstein equations, since extreme amounts of
negative energy would have to be concentrated in microscopic space domains. The
argument involves approximations which are justified in the case of macroscopic wormholes.
[ L. Ford and T. Roman, C.J. Fewster and T. Roman ]

ad warpdrive:

Again, difference QEIs imply severe constraints on the possiblity to have warpdrive
geometries as solutions to the semiclassical Einstein equations. Macroscopic warpdrive
scenarios appear impossible by a similar reasoning as in the case of wormholes.
[ L. Ford and M. Pfenning ]
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Current (open) issues

The given arguments against solutions to the semiclassical Einstein-equations do so far not
apply to all scales and only to linear quantum fields.

The issue of validity of QEIs for interacting quantum fields is completely open.

To restrict wormholes etc at submicroscopic scales, one needs sharp absolute
covariant QEIs. This would (partially) clarify the role played by “vacuum energy”
contributions in the semiclassical Einstein–equations.

Existence/Generacy of LTE states?

Resolution of these matters is of relevance for certain questions in cosmology and
quantum gravity.
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Universe at all scales
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CMB as “fingerprint” of the early universe
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CMB variance and curvature
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