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On the consequences of twisted Poincaré symmetry upon QFT on Moyal NC spaces – p.1/36



Introduction
The idea of spacetime NC is rather old: goes back to Heisenberg.

Simplest NC: constant commutators

Moyal space: [x̂µ, x̂ν ] = i1θµν (1)

AlgebraÂ of functions on Moyal space: generated by1, x̂µ

fulfilling (1). With µ = 0, 1, 2, 3 andηµν : deformed Minkowski

space.θµν = 0: A generated by commutingxµ.

(1) are translation invariant, not Lorentz-covariant.

Contributions to the construction of QFT on it start in 1994-95.

I would divide them into 3 groups, according to the used

approaches. By no means are they equivalent!
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1. DFR Approach

(Doplicher, Fredenhagen, Roberts 1994-95; Bahns, Piacitelli,...):

field quantization in (rigorous) operator formalism on deformed

Minkowski space. (1) motivated by the interplay of QM and GR

in what they call thePrinciple of gravitational stability against
localization of events:
The gravitational field generated by the concentration of energy

required by the Heisenberg Uncertainty Principle to localise an

event in spacetime should not be so strong to hidea the event

itself to any distant observer - distant compared to the Planck

scale.

(Goes back to Wheeler?)
aBy black hole formation
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In the first, simplest versionθµν are not fixed constants, but

central operators (obeying additional conditions) which on each

irrep become fixed constantsσµν , the joint spectrum ofθµν .

In more recent versionsθµν is no more central, but commutation

relations remain of Lie-algebra type.

It seems that the wished Lorentz covariance is sooner or later

lost.

Speculations (heard from Doplicher):θµν should be finally

related to v.e.v. ofRµν, which in turn should be influenced by the

presence of matter quantum fields in spacetime (through

quantum equations of motions).
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2. Path-integral quantization

Initiated by Filk 1996. A lot of physicists: N. Seiberg, E. Witten,

M. R. Douglas, A.S. Schwarz, S. Minwalla, M. Van Raamsdonk,

J. Gomis, T. Mehen, L. Alvarez-Gaume, M.A. Vazquez-Mozo,

N. A. Nekrasov, R.J. Szabo,...., H. Grosse, R. Wulkenhaar,...

String people motivation: low-energy effective theory from

string theory in a constant backgroundB-field.

(Wick-rotated) Lorentz covariance is lost, but this is expected in

effective string theory because of theB-field.

Many pathologies: violation of causality, non-unitarity (for

θ0i 6= 0), UV-IR mixing of divergences, subsequent

non-renormalizability, claimed changes of statistics, etc.
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UV-IR MIXING:

Planar Feynman diagrams remain as the undeformed, apart from

a phase factor, in particular have the same UV divergences.

Nonplanar Feynman diagrams which were UV divergent become

finite for generic non-zero external momentum, but diverge as

the latter go to zero, even with massive fields: IR divergences!

Necessary∞-ely many counterterms⇒ nonrenormalizability.

H. Grosse & R. Wulkenhaar’s cure (for scalar theories):

addx-dependent harmonic potential termΩ2x2ϕ ⋆ ϕ to the

lagrangian in Euclidean path-integral formulation of QFT.Then

renormalizable theory. ActuallyΩ2x2ϕ ⋆ ϕ is the only other

marginal/relevant operator in the renormalization group flow.

These two "brave riders" are chasing "Landau’s ghost" out ofthe

castle.
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3. Twisted Poincaré covariant approaches

This is the framework of our work, subject of this talk.

It recovers Poincaré covariance in a deformed version.

Field quantization either in an operator or in a path-integral

approach (on the Euclidean).

Chaichianet al, Wess, Kochet al, Oeckl:

(1) are twisted Poincaŕe groupcovariant.

How to implement twisted Poincaŕe covariance in QFT?

Different proposals,[Chaichianet al04,05,06], [Tureanu06],

[Balachandranet al05,06] [Lizzi et al06], [Bu et al 06], [Zahn

06], [Abe 06]...:

a) do coordinatesx, y of different spacetime points commute?

b) deform the CCR ofap, a
†
p for free fields?
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Summary of our work

We note that a proper enforcement of the “twisted Poincaré”

covariance of[Chaichianet al], [Wess], [Kochet al], [Oeckl]

requires (nontrivial) "braided" commutation relations between

any pair of coordinatesx, y generating two different copies of the

Grönewold-Moyal space, or equivalently a⋆-tensor product

f(x) ⋆ g(y) (in the parlance of[Aschieriet al]).

Then all(x − y)µ behave like undeformed coordinates.

Consequently, one can formulate QFT in a way physically

equivalent to the undeformed counterpart, as observables involve

only coordinate differences. (Similarly forn-particle QM)
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Plan
1. Introduction

2. Twisted Poincaré Hopf algebra, several spacetime

variables,⋆-products

3. Revisiting Wightman axioms for QFT and their

consequences

4. Free fields

5. Interacting fields

6. (Some) Conclusions?
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2. The Hopf ∗-algebraH ≡ UθP

This isUP (P = Poincaré Lie algebra) “twisted”[Drinfel’d 83]

with F : UP , H have

1. same∗-algebra and counitε(≡ trivial representation)

2. coproducts∆, ∆̂ related by

∆(g) ≡
∑

I

gI
(1)⊗gI

(2) −→ ∆̂(g) = F∆(g)F−1 ≡
∑

I

gI
(1̂)
⊗g

The twistF is not uniquely determined. The simplest choice is

F ≡
∑

I F
(1)
I ⊗F

(2)
I := exp

(
i
2
θµνPµ ⊗ Pν

)
.

∆̂(Pµ) = Pµ ⊗ 1 + 1 ⊗ Pµ = ∆(Pµ),

∆̂(Mω) = Mω ⊗ 1 + 1 ⊗ Mω + P [ω, θ] ⊗ P 6= ∆(Mω).
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If not familiar with Hopf algebras:the coproduct says how to

construct the tensor product of any two representations.

Cocommutative Hopf algebraUg :

g ∈ g → ∆(g) = (g ⊗ 1 + 1 ⊗ g) ≡ g1 + g2 ∈ Ug .

Clearly∆(1)=1⊗ 1. One can extend∆ as a∗-algebra map

∆ : Ug → Ug ⊗ Ug , ∆(ab) := ∆(a)∆(b) (2)

unambiguously (in fact:∆
(
[g, g′]

)
=

[
∆(g),∆(g′)

]
if g, g′ ∈ g ).

∆̂ also fulfills (2),∆̂(1)=1⊗ 1, compatibility withǫ and∗ (F is

unitary). Then∆̂ can replace∆ in constructing the tensor

product of two representations ofUg : deformed coalgebra.

3. With the aboveF same antipode,̂S = S.

S(g) = −g if g ∈ g , S(1) = 1, S(ab) = S(b)S(a).
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(1) areH-covariant, i.e. Â is aH-module algebra, asA is aUP

-module algebra:∃ (left) actions⊲, ⊲̂ of UP , H onA, Â (g∈UP

acts onA as corresponding differential operator, e.g.Pµ ∼ i∂µ):

• ⊲, ⊲̂ act in the same way on 1st degree polynomials inxν , x̂ν

Pµ⊲x
ρ = iδρ

µ =Pµ⊲̂x̂
ρ, Mω⊲xρ =2i(xω)ρ, Mω⊲̂x̂ρ =2i(x̂ω)

and more generally on irreps (irreducible representations); ⇒

Same classification of elementary particles as unitary irreps ofP!

• ⊲, ⊲̂ differ on higher degree polynomials inx, x̂,

g ⊲(ab)=
∑

I

(
g(1)⊲ a

)(
g(2)⊲ b

)

g⊲̂(âb̂)=
∑

I

(
gI
(1̂)

⊲̂â
)(

gI
(2̂)

⊲̂b̂
)

⇔ g⊲̂(a⋆b)=
∑

I

(
gI
(1̂)

⊲̂a
)
⋆
(
gI
(2̂)

(these resp. reduce to usual ordeformedLeibniz rule if g ∈ P),

and more generally on tensor products of representations.
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Several spacetime variables

LetAn be then-fold tensor product algebra ofA,

xµ
1 ≡ xµ⊗1⊗...⊗1, xµ

2 ≡ 1⊗xµ⊗...⊗1,...

An is UP-covariant, i.e.[xµ
i , x

ν
j ] = 0 are compatible with⊲.

[x̂µ
i , x̂

ν
j ] = 0 is not compatible witĥ⊲ (apply e.g.Mω⊲̂) .

TheH-covariant NC generalization ofAn is the unital∗-algebra

Â
n

generated by real variablesx̂µ
i fulfilling

[x̂µ
i , x̂

ν
j ] = 1iθµν , (3)

dictated by the braiding associated to the quasitriangular

structureR = F21F
−1 of H.

Note: some authors erroneously impose (3) only fori = j, and

rhs(3)=0 fori 6= j.
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⋆-Products

Equivalent formulation ofÂ
n
: Forn ≥ 1 letAn

θ be the algebra

coinciding withAn as a vector space, but with the new product

a ⋆ b :=
∑

I(F
(1)

I ⊲ a)(F
(2)

I ⊲ b), (4)

with F ≡ F−1. This encodes both the⋆-product within each

copy ofA, and the “⋆−tensor product” algebra[Aschieriet al].

An
θ has⋆-commutation relations isomorphic to (3),⇒ Â

n
,An

θ

are isomorphicH-module∗-algebras: the aboveF gives

xµ
i ⋆xν

j = xµ
i x

ν
j +iθµν/2 ⇒ [xµ

i
⋆, xν

j ] = 1iθµν ,

a(xi)⋆b(xj)=exp[
i

2
∂xi

θ∂xj
]a(xi)b(xj), (4′)

after which we must setxi =xj if i=j.
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Strictly speaking, (4’) makes sense ifa, b belong to some

subalgebraAn′⊂An such that theθ-power series is termwise

well-defined and convergent. (Not enough for field theory.)

If a, b ∈ An′ admit Fourier transform then

a(xi)⋆b(xj) =

∫
d4k

∫
d4qǎ(k)b̌(q) exp[i(k ·xi +q ·xj −kθq/2)]

(with kθq := kµθ
µνqν). This can be used as adefinitionof

⋆-producta, b ∈ L1(R4) ∩ L̂1(R4), or even ifa, b are

distributions.

In the sequel we express NC only by⋆-products.
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Alternative generators ofAn
θ

ξµ
i =xµ

i+1−xµ
i , Xµ =

∑n

j=1 ajx
µ
j (i<n,

∑n

j=1 aj =1)

1. [Xµ ⋆,Xν ] = 1iθµν , soXµ generate aAθ,X , whereas∀b∈An
θ

ξµ
i ⋆ b = ξµ

i b = b ⋆ ξµ
i ⇒ [ξµ

i
⋆, b] = 0, (5)

ξµ
i generate a⋆-central subalgebraAn−1

ξ , andAn
θ ∼An−1

ξ ⊗Aθ,X .

2. An−1
ξ ,Aθ,X are actuallyH-module subalgebras, with
g⊲̂a=g ⊲ a a∈An−1

ξ , g∈H

g⊲̂(a⋆b)=
(
g(1) ⊲ a

)
⋆
(
g(2)⊲̂b

)
, b∈An

θ ,
(6)

i.e. onAn−1
ξ theH-action is undeformed, including the related

part of the Leibniz rule. [By (10)⋆ can be also dropped.] Allξµ
i

are translation invariant.
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Remark 1. (x−y)µ⋆ = (x−y)µ·, same spectral decomposition

on allR (including 0). On each irrep ofAn
θ this amounts to

multiplication by either a space-like, or a null, or a time-like

4-vector, in the usual sense.

Summing up, coordinate differences can be treated as classical

variables; anyxµ
i is a combination of⋆-commutativeξµ

i and the

⋆-noncommutativeXµ, e.g. ifX :=x1

xi =
i−1∑

j=1

ξj + X.

X =Global “noncommutative translation”.

1.,2. can be reformulated in terms ofx̂i, Â
n
, etc.X̂ is like the

“quantum shift operator” of[Chaichianet al].
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Thedifferential calculus is not deformed, asPµ ⊲ ∂xν
i

= 0

implies∂xν
i
⋆ = ∂xν

i
= ⋆∂xν

i
:

∂x
µ
i

⋆ xν
j = δν

µδ
i
j + xν

j ⋆ ∂x
µ
i

[
∂x

µ
i

⋆, ∂xν
j

]
= 0

(∂̂x
µ
i

on Â
n

is isomorphic). In the sequel we shall drop the

symbol⋆ beside a derivative.

Formally, alsointegration over the space is not deformed:
∫

d4x a ⋆ b =

∫
d4x ab (7)

Stoke’s theorem still applies.
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Consequences for QFT
Wightman axioms grouped into subsetsQM , R ([Strocchi]):

QM1. The states are described by vectors of a (separable)

Hilbert spaceH.

QM2. The group of space-time translationsR4 is represented on

H by strongly continuous unitary operatorsU(a). The spectrum

of the generatorsPµ is contained in̄V+ = {pµ : p2 ≥ 0, p0 ≥ 0}.

There is a unique Poincaré invariant stateΨ0, thevacuum state.

QM3. The fields (in the Heisenberg representation)ϕα(x) [α

enumerates field species and/orSL(2, C)-tensor components]

are operator (onH) valued tempered distributions on Minkowski

space, withΨ0 acyclic vector for the fields, i.e. polynomials of

the (smeared) fields applied toΨ0 give a setD0 dense inH.
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Taking v.e.v.’s we defineWightman functions(distributions):

Wα1,...,αn(x1, ..., xn) = (Ψ0, ϕ
α1(x1) ⋆ ... ⋆ ϕαn(xn)Ψ0) , (8)

or (their combinations)Green’s functions

Gα1,...,αn(x1, ..., xn)=(Ψ0, T [ϕα1(x1)⋆ ... ⋆ϕαn(xn)]Ψ0) ; (9)

no problem in definingtime-orderingT as on commutative

Minkowski space, even ifθ0i 6= 0,

T [ϕα1(x)⋆ϕα2(y)]=ϕα1(x)⋆ϕα2(y)ϑ(x0−y0)+ϕα2(y)⋆ϕα1(x)ϑ(y0−x0)

asϑ(x0−y0) are⋆-central (ϑ ≡Heavyside function). [The⋆’s

preceding allϑ can be and have been dropped, by (10).]
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Argue as for ordinary QFT[Streater & Wightman 1964].

QM2⇒ Wightman and Green’s functions are translation
invariant and therefore maydepend only on theξµ

i .

Wα1,...,αn(x1, ..., xn) = Wα1,...,αn(ξ1, ..., ξn−1),

Gα1,...,αn(x1, ..., xn) = Gα1,...,αn(ξ1, ..., ξn−1).
(10)

From QM3, QM2, QM1 it follows

W1. W{α}(x1,...,xn)=W {α}(ξ1,...,ξn−1) are tempered distributions.

W2. (Spectral condition) The support of the Fourier transform

W̃ of W is contained in the product of forward cones, i.e.

W̃ {α}(q1, ...qn−1) = 0, if ∃j : qj /∈ V +. (11)

W3. W{α} fulfill the sameHermiticity and Positivity properties

following from those of the scalar product inH.
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Ordinaryrelativistic conditions on QFT:

R1. (Lorentz Covariance) SL(2, C) is represented onH by

strongly continuous unitary operatorsU(A), and under the

Poincaré transformationsU(a, A) = U(a) U(A)

U(a,A) ϕα(x) U(a,A)−1 = Sα
β (A−1) ϕβ

(
Λ(A)x+a

)
, (12)

with S a finite-dimensional representation ofSL(2, C).

R2. (Microcausality or locality ) The fields either commute or

anticommute at spacelike separated points

[ϕα(x), ϕβ(y) ]∓ = 0, for (x − y)2 < 0. (13)

As a consequence of QM2,R1 in ordinary QFT one finds
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W4. (Lorentz Covariance of Wightman functions)

Wα1...αn
(
Λ(A)x1,...,Λ(A)xn

)
=Sα1

β1
(A)...Sαn

βn
(A)Wβ1...βn(x1,...,xn).

(14)

R1 needs a “twisted” reformulationR1⋆, which we defer.

R1⋆ should imply thatW {α} areSLθ(2, C) tensors, anyway.

But, as theW {α} should be built only in terms ofξµ
i and other

SL(2, C) tensors (like∂x
µ
i
, ηµν , γ

µ, polarization vectors, spinors,

etc.), which are all annihilated byPµ⊲, F should act as id and

W {α} should transform underMρσ as forθ = 0. Thereforewe
shall require W4 also if θ 6= 0 as a temporary substitute of R1.

R2⋆? Simplest:with a⋆-commutator; makes sense, as space-like

separation is well-defined. Alternatively,∃ some reasonable

weakening? In fact, an open question also on commutative

space; the same restrictions should apply.
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R2⋆. [ϕα(x) ⋆, ϕβ(y) ]∓ = 0, for (x − y)2 < 0.

Argue as[S. & W. 1964]to prove QM1-3, W4, R2⋆ are

(independent and) compatible: they can be fulfilled by free fields

(see below)! So in particularthe noncommutativity structure
of a Moyal space is compatible with R2⋆!
As consequences of R2⋆ one again finds

W5. (Locality ) if (xj − xj+1)
2 < 0

W{α}(x1, ...xj , xj+1, ...xn) = ±W{α}(x1, ...xj+1, xj, ...xn).

(15)

W6. (Cluster property ) For any spacelikea and forλ → ∞

W{αα′}(x1,...xj,xj+1+λa,..., xn+λa) → W{α}(x1,...,xj)W
{α′}(xj+1,...,x

(16)

(convergence as distributions); true also with permutedxi’s.On the consequences of twisted Poincaré symmetry upon QFT on Moyal NC spaces – p.24/36



Summarizing: QFT framework withQM1-3, W4, R2⋆ or

alternatively with constraintsW1-6 onW{α} exactly as in QFT

on Minkowski space.

We stress that these results should hold for allθµν , and not only

if θ0i = 0, as in other approaches.
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Free fields
Free field e.o.m. remain undeformed (as�, 6∂, etc), hence also

their constraints onW{α},G{α} and on the field comm. relations.

For simplicity Hermitean scalar fieldϕ0(x) of massm. One finds

(�x + m2)ϕ0 = 0, ⇒

ϕ0(x) = ϕ+
0 (x)+ϕ−

0 (x)=
∫

dµ(p) [e−ip·xap+a†
pe

ip·x],
(17)

wheredµ(p) := δ(p2−m2)ϑ(p0)d4p, and

W (x−y) =
∫

dµ(p)
(2π)3

e−ip·(x−y) = −iF+(x − y)

G(x−y) =
∫

d4p

(2π)4
e−ip·(x−y)

p2−m2+iǫ
,

(18)

(18) are independent ofR2⋆ or any other assumption about field

commutation relations, which are not used in the proof.
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Adding R2⋆ and reasoning as in the proof of the Jost-Schroer

Thm. (4-15 in[S. & W. 1964]) one proves (up to a factor> 0) the

free field commutation relation

[ϕ0(x) ⋆, ϕ0(y)]= iF (x−y), F (ξ) :=F+(−ξ)−F+(ξ) (19)

(F undeformed!). Applying∂y0 and then settingy0 = x0 [this is

compatible with (7)] one even findsthe c.c.r.

[ϕ0(x
0,x) ⋆, ϕ̇0(x

0,y)] = i δ3(x − y). (20)

As a consequence of (24), also then-point Wightman functions

coincide with the undeformed ones, i.e. vanish ifn is odd and

are sum of products of two point functions ifn is even

(factorization). This agrees with the cluster property, asexpected.

Two ways to getϕ0 fulfilling (19) from (17). The first is by

pluggingap, a†
p satisfying the commutation relations
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a†
pa

†
q = eipθ′q a†

qa
†
p, apaq = eipθ′q aqap,

apa†
q = e−ipθ′q a†

qa
p + 2ωpδ3(p−q),

[ap, f(x)] = [a†
p, f(x)] = 0,

θ′ = θ (21)

(pθq := pµθ
µνqν), as adopted in[Balachandranet al05,06]first,

then[Lizzi et al 06, Abe 06]. The choiceθ′ = 0 gives the CCR,

assumed in most of the literature, explicitly in[Doplicheret al

95], apparently in[Chaichianet al04,05,06], [Tureanu06], or

implicitly in path-integral approach to quantization.

Correspondingly, one finds non-local⋆-commutation relations

ϕ0(x) ⋆ ϕ0(y) = ei∂x(θ−θ′)∂yϕ0(x) ⋆ ϕ0(y) + i F (x − y), (22)

unlessθ′ = θ. [But takingθ′ = θ and usingϕ0(x)ϕ0(y) instead

of ϕ0(x) ⋆ ϕ0(y) one also finds non-local relations.]
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W(x1, x2, x3, x4) = W (x1−x2)W (x3−x4) (23)

+ei∂x2(θ−θ′)∂x3W (x1−x3)W (x2−x4) + ...

The first term at the rhs comes from the v.e.v.’s ofϕ0(x1)⋆ϕ0(x2)

andϕ0(x3)⋆ϕ0(x4); it is Lorentz invariant and factorized. The

second, nonlocal term comes from the v.e.v.’s ofϕ0(x1)⋆ϕ0(x3)

andϕ0(x2)⋆ϕ0(x4), after commutingϕ0(x2), ϕ0(x3). Only if

θ′=θ is Lorentz invariant and factorizes toW(x1−x3)W(x2−x4).

As it depends only onx1−x3, x2−x4, it is invariant under

(x1, x2, x3, x4) → (x1, x2+λa, x3, x4+λa). By takinga

space-like andλ → ∞, we conclude that ifθ′ 6= θ W violates

W4 and W6, as expected.
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The second, “exotic” way to realize the free com. rel. (19) is:

AssumePµ ⊲ a†
p = pµa

†
p, Pµ ⊲ ap = −pµa

p and extend the

⋆-product law also toap, a†
p. It amounts toθ′ = −θ (inserting⋆’s)

and nontrivial com. rel. between theap, a†
p and functions:

a†
p⋆a†

q = e−ipθq a†
q⋆a†

p, ap⋆aq = e−ipθq aq⋆ap,

ap⋆a†
q = eipθq a†

q⋆ap + 2ωpδ3(p−q),

ap⋆eiq·x = e−ipθq eiq·x⋆ap, a†
p⋆eiq·x = eipθq eiq·x⋆a†

p.

(24)

Whence[ϕ0(x) ⋆, f(y)] = 0. The first three relations define an

example of a general deformed Heisenberg algebra[G. F. 95]

aq ⋆ ap = Rqp
rs as ⋆ ar a†

p ⋆ a†
q = Rsr

pq a†
r ⋆ a†

s

ap ⋆ a†
q = δp

q + Rrp
qs a†

r ⋆ as
(25)

covariant under a triangular Hopf algebraH.
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HereRpq
rs := 〈p|〈q|R |r〉|s〉, R := F21F

−1 is the triangular

structure ofH, {|p〉} is the generalized basis of the 1-particle

Hilbert space consisting of (on-shell) eigenvectors ofPµ;

δp
q =2ωpδ3(p−q) is Dirac’s delta (up to normalization).

Up to normalization ofR, and withp, q, r, s ∈ {1, ..., N},

relations (25) are also identical to the ones defining the older

q-deformed Heisenberg algebras of [Pusz & Woronowicz], [Wess

& Zumino], based on a quasitriangularR in (only) the

fundamentalrepresentation ofH = Uqsu(N).
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Interacting QFT (T -ordered perturb. th.)

Def. Normal ordering: An
θ -bilinear map of field algebra into

itself such that(Ψ0, :M : Ψ0) = 0, in particular:1 : = 0.

Applying it to (21) we find that it is consistent to define

:apaq :=apaq, :a†
pa

q :=a†
pa

q, :a†
pa

†
q :=a†

pa
†
q, :apa†

q :=a†
qa

pe−ipθ′q

Note the phase. More generally, in any monomial reorders allap

to the right of alla†
q introducing ae−iqθ′p for each flipap ↔ a†

q.

Assuming (21) or (24), (i.e. free field com. rel.) one finds

:ϕ0(x) : = ϕ0(x)

:ϕ0(x) ⋆ ϕ0(y) : = ϕ0(x) ⋆ ϕ0(y) − (Ψ0, ϕ0(x) ⋆ ϕ0(y)Ψ0)

:ϕ0(x)⋆ϕ0(y)⋆ϕ0(z) : =ϕ0(x)⋆ϕ0(y)⋆ϕ0(z)−(Ψ0,ϕ0(x)⋆ϕ0(y)Ψ0) ϕ0

−(Ψ0, ϕ0(x)⋆ϕ0(z)Ψ0) ϕ0(y)−ϕ0(x) (Ψ0, ϕ0(y)⋆ϕ0(z)Ψ0)

...
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Well-defined operators also if coinciding coordinates (e.g.

y→x). Moreover,the same Wick theorem will hold:

T
[
ϕ0(x) ⋆ ϕ0(y)

]
= :ϕ0(x) ⋆ ϕ0(y) : +

(
Ψ0, T

[
ϕ0(x) ⋆ ϕ0(y)

]
Ψ0

T
[
ϕ0(x)⋆ϕ0(y)⋆ϕ0(z)

]
=:ϕ0(x)⋆ϕ0(y)⋆ϕ0(z):+

(
Ψ0, T

[
ϕ0(x)⋆ ϕ0(y)

]
Ψ0

)
:ϕ

+
(
Ψ0, T

[
ϕ0(x)⋆ ϕ0(z)

]
Ψ0

)
:ϕ0(y): +

(
Ψ0, T

[
ϕ0(y)⋆ ϕ0(z)

]
Ψ0

)
:ϕ0(

...

Interacting theory. Wish to apply the Gell-Mann–Low formula

G(x1,...,xn)=

(
Ψ0, T

{
ϕ0(x1)⋆...⋆ ϕ0(xn)⋆ exp

[
−iλ

∫
dy0 HI(y

0)
]}

Ψ(
Ψ0, T exp

[
−i

∫
dy0 HI(y0)

]
Ψ0

)

(27)

Hereϕ0 ≡free "in" field, andHI(x
0) is the interaction

Hamiltonian in the interaction representation.
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Choose

HI(x
0) = λ

∫
d3x :ϕ⋆m

0 (x) : ⋆ ϕ⋆m
0 (x) ≡ ϕ0(x) ⋆ ... ⋆ ϕ0(x︸ ︷︷

m times

This is a well-defined, Hermitean operator, with zero v.e.v.

Expanding theexp we evaluate the genericO(λh) term in the

numerator or denominator as in the undeformed case: applying

Wick Thm to the field monomial and(Ψ0,:M :Ψ0)=0 we find

exactly thesameintegrals overy-variables of products of free

propagators having coordinate differences as arguments. Each

term is represented by a Feynman diagram. So theGreen’s
functions coincide with the undeformed onesand can be

computed by Feynman diagrams with the undef. Feynman rules.

So, at least perturbatively,this QFT is completely equivalent to
the undeformed one(no more pathologies like UV-IR mixing!).
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Conclusions. What do we learn?
• Glass: half full or half empty?

• Various approaches to QFT on NC spaces. Operator ones

(as by[Doplicher, Fredenhagen, Roberts, Bahns, Piacitelli])

on (deformed) Minkowski spaces look safer starting points,

but still no completely satisfactory guiding principle.

• Twisting or not Poincaré group, and doing it properly,

makes radical differences.

• A sensible theory with twisted Poincaré seems possible:

equivalent to the undeformed one. Avoids all complications

(IV-UR, causality/unitarity violation, statistics violation,

cluster property violation,...).

• Obtained by matching operator (a, a†) and spacetime

noncommutativities somehow to compensate each otherOn the consequences of twisted Poincaré symmetry upon QFT on Moyal NC spaces – p.35/36



• No new physics, nor a more satisfactory formulation of old

one (e.g. by an inthrinsic UV regularization)...

• ... but can be used as a Lab to:

1. look for and test equivalent formulations of QFT on

NC spaces: Wick rotation into EQFT, path integral

quantization, etc.;

2. clarify notions asymptotic states, spin-statistics, CPT,

etc., on NC spaces;

3. properly formulate covariance properties of fields

under twisted symmetries (R1⋆), and clarify their

connection to the ordinary ones.

4. properly formulate gauge field theory on NC spaces.
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