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Introduction

The idea of spacetime NC is rather old: goes back to Heisgn
Simplest NC: constant commutators

G, 3] = i16M (1)

Algebraﬁ of functions on Moyal space: generatedhy:*
fulfilling (1). With . = 0,1, 2, 3 andn,,: deformed Minkowski
spacef” = 0. A generated by commuting‘.

(1) are translation invariant, not Lorentz-covariant.

Contributions to the construction of QFT on it start in 19%%l-
| would divide them into 3 groups, according to the used
approaches. By no means are they equivalent!
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1. DFR Approach

(Doplicher, Fredenhagen, Roberts 1994-95; Bahns, Pliacite
field quantization in (rigorous) operator formalism on defed
Minkowski space. (1) motivated by the interplay of QM and C
In what they call thd’rinciple of gravitational stability against
localization of events:

The gravitational field generated by the concentration adrgy
required by the Heisenberg Uncertainty Principle to losalan
event in spacetime should not be so strong to Hidiee event
itself to any distant observer - distant compared to the Bkan
scale.

(Goes back to Wheeler?)

2By black hole formation
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In the first, simplest versiof*” are not fixed constants, but
central operators (obeying additional conditions) whialeach
irrep become fixed constanig”, the joint spectrum of*".

In more recent versiong” Is no more central, but commutatic
relations remain of Lie-algebra type.

It seems that the wished Lorentz covariance is sooner ar late
lost.

Speculations (heard from Dopliche#)?” should be finally
related to v.e.v. of*”, which in turn should be influenced by t
presence of matter quantum fields in spacetime (through
guantum equations of motions).
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2. Path-integral quantization

Initiated by Filk 1996. A lot of physicists: N. Seiberg, E. ¥én,
M. R. Douglas, A.S. Schwarz, S. Minwalla, M. Van Raamsdc
J. Gomis, T. Mehen, L. Alvarez-Gaume, M.A. Vazquez-Mozc
N. A. Nekrasov, R.J. Szabo,...., H. Grosse, R. Wulkenhaatr,.

String people motivation: low-energy effective theoryrfro
string theory in a constant backgrouBdfield.

(Wick-rotated) Lorentz covariance is lost, but this is extpé Iin
effective string theory because of thefield.

Many pathologies: violation of causality, non-unitarifgrn
0% £ 0), UV-IR mixing of divergences, subsequent
non-renormalizabllity, claimed changes of statistics, et
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UV-IR MIXING:

Planar Feynman diagrams remain as the undeformed, apaut
a phase factor, in particular have the same UV divergences.
Nonplanar Feynman diagrams which were UV divergent bec
finite for generic non-zero external momentum, but diveigje &
the latter go to zero, even with massive fields: IR divergehce
Necessaryo-ely many counterterms- nonrenormalizability.

H. Grosse & R. Wulkenhaar’s cure (for scalar theories):
addz-dependent harmonic potential tefizy x ¢ to the
lagrangian in Euclidean path-integral formulation of QFen
renormalizable theory. Actuallz?y % ¢ is the only other
marginal/relevant operator in the renormalization groawHl

On the consequences of twisted Poincaré symmetry upon QMogyal NC spaces — p.6



3. Twisted Poincaré covariant approaches

This is the framework of our work, subject of this talk.

It recovers Poincaré covariance in a deformed version.
Field quantization either in an operator or in a path-irdégr
approach (on the Euclidean).

Chaichiaret al, Wess, Koctet al, Oeckl:
(1) are twisted Poincar groupcovariant.

How to implement twisted Poincare covariance in QFT?

Different proposals,Chaichianet al 04,05,06], [Tureanu06]
[Balachandrarmet al 05,06] [Lizzi et al 06], [Bu et al 06], [Zahn
06], [Abe 06]..:

a) do coordinates, y of different spacetime points commute?
b) deform the CCR ofi,,, a!, for free fields?
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Summary of our work

We note that a proper enforcement of the “twisted Poincaré”
covariance ofChaichianet all, [Wess], [Kochet all, [Oeckl]
requires (nontrivial) "braided" commutation relationgvioeen
any pair of coordinates, y generating two different copies of t
Gronewold-Moyal space, or equivalentlywdensor product
f(x)* g(y) (in the parlance ofAschieriet al]).

Then all(z — y)* behave like undeformed coordinates.

Consequently, one can formulate QFT in a way physically
equivalent to the undeformed counterpart, as observamles/e
only coordinate differences. (Similarly farparticle QM)
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Plan

1. Introduction

2. Twisted Poincare Hopf algebra, several spacetime
variablesx-products

3. Revisiting Wightman axioms for QFT and their
consequences

4. Free fields
5. Interacting fields

6. (Some) Conclusions?
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2. The Hopf x-algebra H = UyP
ThisisUP (P = Poincare Lie algebra) “twistedDrinfel’d 83]
with 7. UP, H have

1. samex-algebra and couni(= trivial representation)

2. coproduct\, A related by

Alg) =D g(y®gly — Alg) = FA(QF =) g(®
I 1

Thetwist F is not uniquely determined. The simplest choice |

F=,FVoF? =exp(i0"P, o P,).

A(P)=P,®1+1® P, =A(P,),

A

AM,)=M,®1+1 M, + Plw,0] @ P # A(M,,).

whereM,, =w"” M,,,. TranslatioRSUneet@rFAeH o ammanc spaces -p.o



the coproduct says how to
construct the tensor product of any two representations.

Cocommutative Hopf algebridg:
g€ —Ag) =(9®1+1®g) =g +g2 € Ug.
ClearlyA(1)=1 ® 1. One can extendh as ax-algebra map
A:Ug —-Ug®Ug, A(ab) := Al(a)A(b)  (2)

unambiguously (in factA([g, ¢']) = [A(9), A(¢)] if g, " € 9).
A also fulffills (2),A(1) =1 ® 1, compatibility withe andx (F is
unitary). ThenA can replace\ in constructing the tensor
product of two representations &1y . deformed coalgebra.

3. With the aboveF same antipodey = S.
S(g)=—gifgedg,S51)=1,S(ab) = 5(b)S(a).
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(1) are H-covariant, I.e. A'is a H-module algebra, ad isaUP
-module algebrai (left) actions>, &> of UP, H on A, A (gecUP
acts onA as corresponding differential operator, ).~ ¢9,,):
e > > act in the same way on 1st degree polynomialg“inz”

B px? =il =P,>17, M >xf =2i(xw)”, M, 52° =2i(zw

and more generally on irreps (irreducible representaljcas

e >, &> differ on higher degree polynomials in z,

gv(ab) =32, (90> a)(92)> b)
ge(ab)=2_; (g(li)ﬁ&)(g(lé)%) < gaxb)=2 (g(li)ﬁa) * (g(l
(these resp. reduce to usualdeformedLeibniz rule if g € P),

and more generally on tensor products of representations.
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Several spacetime variables

Let A" be then-fold tensor product algebra of,
= r'R1®..01, o =11"®..Q1,...
A" is UP-covariant, i.e [z}, 2] = 0 are compatible witk.

;' , 2%] = 0 is not compatible with- (apply e.g.M,5) .

The H-covariant NC generalization ofA™ is the unitalx-algebre
A" generated by real variablé4 fulfilling

7, 5] = 10", (3)

7

dictated by the braiding associated to the quasitriangular
structureR = Fo; F ' of H.

Note: some authors erroneously impose (3) only:fer 5, and
rhs(3)=0 for; # ;.
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*x-Products

Equivalent formulation ofA : Forn > 1 let Ay be the algebra
coinciding with A™ as a vector space, but with the new produ

axbi=3 (F s a)(FP s b), (4)

with F = F~. This encodes both theproduct within each
copy of A, and the %¥—tensor product” algebrighschieriet all.
Ay hasx-commutation relations isomorphic to (3); A Ay
are isomorphid?Z-modulex-algebras: the abovg gives

Ty *xf = x; i +i0" /2 = [y ¥ af] = 190",

o) xb(ir;) =exp| 50,00, Jalr.)b(z,). (1)

afterwhich we must set; =z If i=.
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Strictly speaking, (4’) makes senseuifb belong to some
subalgebrad™ c A" such that thé-power series is termwise
well-defined and convergent. (Not enough for field theory.)
If a,b € A" admit Fourier transform then

o 4b(z;) = / d'h / iqa(k)b(q) explilk i+ q-2; — kOg/2)

(with k0q := k,0""q,). This can be used asdefinitionof

A

x-producta, b € L'(R*) N L*(R*), or even ifa, b are
distributions.

In the sequel we express NC only yproducts.
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Alternative generators of Ay
H__ M H _ n 2 . n L
§i =T — T X”—ijl a;x; (z<mn, 29:1 a;=]

1. [ X#* X"] = 1i0", so X* generate &y x, whereasbh c Ay
Grbo=b=0x& = [§30=0, (5

¢! generate a-central subalgebra] ™, and A} ~ A7 ® Ay x.
) § 0 3 ’

2. Ag_l, Ay x are actuallyf-module subalgebras, with
gPa=g>a aEA?_l, geH

(6)
g5(axb) = (g1) > a)*(g2)5b) . be Ay,

l.e.on Ag‘l the H-action is undeformedncluding the related
part of the Leibniz rule. [By (10} can be also dropped.] Al
are translation invariant.
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Remark 1. (x—y)** = (x—y)*-, same spectral decompositiot
on allR (including 0). On each irrep ofl; this amounts to
multiplication by either a space-like, or a null, or a tines|
4-vector, in the usual sense.

Summing up, coordinate differences can be treated as cdhss
variables; any’’ is a combination ok-commutativet;’ and the
*-noncommutativeX#, e.qg. If X :=x;

1—1
j=1

X =Global “noncommutative translation”.

1.,2. can be reformulated in terms;igtﬁn, etc. X is like the
“guantum shift operator” ofChaichianet all.
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The , aSP, > Oy =
Implies O,y x = Opr = *x0,v:

Dys % Y = 518 + 2 % Dy 0, % O | = 0

(51,5 on A is Isomorphic). In the sequel we shall drop the
symbolx beside a derivative.

/d4aza*b:/d4aﬁab (7)

Stoke’s theorem still applies.

Formally, also
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Consequences for QFT
Wightman axioms grouped into subs€iM, R ([Strocchi)):

QM1. The states are described by vectors of a (separable)
Hilbert spaceH.

QM2. The group of space-time translatioR$ is represented o
H by strongly continuous unitary operatdr$a). The spectrum
of the generator®, is contained i/, = {p, : p> > 0, py > 0}.
There is a unique Poincaré invariant stétte thevacuum state

QM3. The fields (in the Heisenberg representatipfi)z) [«
enumerates field species andfir(2, C)-tensor components]
are operator (off{) valued tempered distributions on Minkows
space, withl, acyclic vector for the fields, i.e. polynomials of
the (smeared) fields applied 1g, give a setD, dense irfH.
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Taking v.e.v.'s we define (distributions):

Wt (@, ) = (Wo, 0™ (1) % o x ™ (2) W), (8)

G (xq, e o) = (Yo, T[N z1) % ... %" ()| Wo);  (9)

no problem in defining as on commutative
Minkowski space, even #" +# 0,

Tp™ () %y )] = ™ (2 k()9 (a =y Heo ™ (y ™ () 9 (3"

asv(xz®—y°) arex-central () =Heavyside function). [The's
preceding alb can be and have been dropped, by (10).]
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Argue as for ordinary QFTStreater & Wightman 1964
QM2 = Wightman and Green’s functions are translation
Invariant and therefore may

Wotosn (2, ) = WSon(€ ),
GO (T ey ) = GO (€ G ).

From QM3, QM2, QM1 it follows

(10)

WL Wz, 2,) = WK(E,,.. £, ) are tempered distribution

W?2. (Spectral condition) The support of the Fourier transforn
W of W is contained in the product of forward cones, i.e.

W{O‘}(ql, eqn) =0, it 35 g ¢ V+- (11)

W3. wied fulfill the sameHermiticity and Positivity properties
following from those of the scalar
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Ordinaryrelativistic conditions on QFT:

R1. (Lorentz Covariance) SL(2,C) is represented oK by
strongly continuous unitary operatdrg A), and under the
Poincaré transformatiorié(a, A) = U(a) U(A)

Ul(a,A) p*(x) U(a,A)_1 = Sg(A_l) gpﬁ (A(A):H—a), (12)

with S a finite-dimensional representation®f.(2, C).

R2. (Microcausality or locality ) The fields either commute or
anticommute at spacelike separated points

(0*(2), ()] =0,  for (x—y)><0.  (13)

As a consegquence of QM2,R1 in ordinary QFT one finds
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W4, (Lorentz Covariance of Wightman functions)

Wt (N (A)xy,.. AA)xy) = S5 A).. S§ (AW P (4,.,,).
(14)

R1 needs a “twisted” reformulatidr1,, which we defer.

R1, should imply that?{*} areSLy(2, C) tensors, anyway.
But, as thé¥ 1*} should be built only in terms @ and other
SL(2,C) tensors (liked,, n,.,, 7", polarization vectors, spinor
etc.), which are all annihilated b¥y,>, F should act as id and
Wit should transform undev/*” as ford = 0. Thereforewe
shall require W4 also if § # 0 as a temporary substitute of R1

R2,? Simplest: ; makes sense, as space-|
separation is well-defined. Alternativelysome reasonable
weakening? In fact, an open guestion also on commutative
space; the same restrictions should apply.
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R2.  [¢*(@) 19 (y)]z =0,  for (z —y)* <O0.

Argue asS. & W. 1964]to prove QM1-3, W4, RRare
(independent and) compatible: they can be fulfilled by frekelé
(see below)! So in particuldhe noncommutativity structure
of a Moyal space is compatible with R2!

As conseguences of RPne again finds

WS5. (Locality) if (z; — x;.1)? <0
W{a}(llﬁl, ceellgy Lj41, len) — :l:W{a}(CCl, ceellj41, Ly, len)
(15)
W6. (Cluster property) For any spacelike and forA — oo
W{O‘O‘nf(:cl,...a:j,a:j+1+)\a,..., T a) — W{O‘}(:Ul,...,:z:j) W{a}(a:jﬂ,...,a
(16)
(convergence as distribuflons), Jue. alsQWINDEN PRI ., .



Summarizing: QFT framework witM1-3, W4, R2, or
alternatively with constraintéV1-6 on Wi} exactly as in QFT
on Minkowski space.

We stress that these results should hold foé/dl] and not only
if 0% = 0, as in other approaches.
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Free flelds

Free field e.o.m. remain undeformed (&sg, etc), hence also
their constraints oMV} Gio} and on the field comm:. relation
For simplicity Hermitean scalar fieldy (z) of massn. One finds

O, + m?)go = 0, =
( m=)eo | (17)
po() = g (x)+¢g (z)= [du(p) Zp.xap‘kajoer&pw]a
wheredu(p) := 0(p? —m? )ﬁ(p )d*p, and
—y) = [ e m W) — (g —y)
(18)

4  e—ip(z—y)
Glx—y)=J (d 5 '

2m)% p2—m2+4ie”’

(18) are independent dR2, or any other assumption about fiel
commutation relationsvhich are not used in the proof.
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Adding R2, and reasoning as in the proof of the Jost-Schroe
Thm. (4-15iIn[S. & W. 1964) one proves (up to a factor0) the
free field commutation relation

o(@) T o(y)]=iF(z—y),  F(&):=F"=5)—-F"¢) (19)

(F undeformed!). Applying,» and then setting® = «° [this is
compatible with (7)] one even findke c.c.r.

(po(2”,x) ¥ 9o (2°,y)] = i6°(x — y). (20)

As a consequence of (24), also tirgpoint Wightman functions
coincide with the undeformed ones, i.e. vanish i§ odd and
are sum of products of two point functionsifis even
(factorization). This agrees with the cluster propertyegsected

Two ways to getp, fulfilling (19) from (17). The first is by
plugginga?, aff satisfying the commutation relations
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t At — ow0'q 1,1 Pad — oi00'q q,p
a,a; =€ Qg afal = e alaP,

aPal = e~ alaP + 2w,0° (p—q), =60 (21)

a?, f(z)] = la], f(z)] =0,

(pfq := p,0""q,), as adopted ifBalachandramet al 05,06]first,
then[Lizzi et al06, Abe 06] The choice)’ = 0 gives the CCR,
assumed in most of the literature, explicitly[inoplicheret al
95], apparently ifChaichianet al 04,05,06], [TureanuOgpr
implicitly in path-integral approach to quantization.
Correspondingly, one finds non-locatommutation relations

po() * po(y) = €Oy (2) % 0o (y) +i F(z —y), (22)

unless?’ = 6. [But takingt’ = 6 and usingpy(z)pq(y) instead
of wo(x) * o(y) one also finds non-local relations. ]
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W(zq, w9, x3,24) = W(ri—a0)W(x3—24) (23)
—|—eia“”2(9_9')a“"3W(x1—xg)W(xg—x4) 4

The first term at the rhs comes from the v.e.v.'sp9fx ) * o (x2)
andp(x3)*po(x4); itis Lorentz invariant and factorized. The
second, nonlocal term comes from the v.e.v.'e@fr;)*po(x3)
andpg (o) *xpo(xy), after commutingog(xz), @o(zs). Only if
¢'=0 is Lorentz invariant and factorizes W(r, — z3) Wirs —x4).
As it depends only on; —x3, x5 — x4, It IS Invariant under
(21, T2, X3, 14) — (21, T2+ Aa, x3, x4+ Aa). By takinga
space-like and. — oo, we conclude that if’ # 6 YV violates
W4 and W6, as expected.

On the consequences of twisted Poincaré symmetry upon @Moyal NC spaces — p.29



The second, “exotic” way to realize the free com. rel. (19) is
AssumeP, > al = p,al, P, >a? = —p,a? and extend the
x-product law also ta”, a!. It amounts t&@’ = — (insertingx’s)
and nontrivial com. rel. between theé, a,;; and functions:

Tl = =0 4T LT Pyl — o~ w09 144 4P
a,xa, = e a;*a,,, a’*xa? = e alxa?,
__ _iph 3
aPxal = el alxaP 4+ 2wpd% (p—q), (24)
aPxe'® = e~V 10Ty P a;f?*ezq“ — P04 ezq"”’”*a;f?.

Whencepq(z) * f(y)] = 0. The first three relations define an
example of a general deformed Heisenberg alggbré. 95|
a? xaP = R a® % a" a;*angzgai*a;f

(25)

Py al = 5P P ol % qf
a? x al = oF + RiL al xa

covariant under a triangular Hopf algehita
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Here RP? := (p|(q|R |r)|s), R := Fo F ' is the triangular
structure ofH, {|p)} is the generalized basis of the 1-particle
Hilbert space consisting of (on-shell) eigenvector$of

0P =2wpd°(p—q) is Dirac’s delta (up to normalization).

Up to normalization ofz, and withp, ¢,r,s € {1,..., N},
relations (25) are also identical to the ones defining therold
g-deformed Heisenberg algebras of [Pusz & Woronowicz], ¢/
& Zumino], based on a quasitriangul&r in (only) the
fundamentatepresentation off = U, su(N).
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|nteraCting QFT (T-ordered perturb. th.)

. Ap-bilinear map of field algebra into
itself such thatW,,: M : ¥y) = 0, in particular:1: = 0.
Applying it to (21) we find that it is consistent to define

ata? = apaq, : a;rjaq = a;rjaq’ . a;rja;rl — a;rjajp apa — aqa 6_Zp9/<

Note the phase. More generally, in any monomial reorderg’a
to the right of alla! introducing ae~?” for each flipa” < aj.
Assuming (21) or (24), (i.e. free field com. rel.) one finds

2po(2): = po(x)

200(x) * po(y): = wolx) * o(y) — (Yo, wol(x) * po(y) Vo)

1o @) x40 ) * o () - = o l@)* o) *Po(2) — (Wo,p0(@) *x o) Wo) ¢
— (W0, o @) *p0() Po) pot) — o) (Yo, Loy)*polx) Yo
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Well-defined operators also if coinciding coordinates.(e.g
y— x). Moreoverthe same Wick theorem will hold

T [i00(x) % 20(y)] = :00(x) * o(y): +(Wo, T[120(x) * 00(y)] ¥
T dappolyrodz] = polapeipdepol2): +HWo, Tlioo) * Pl o) «

+ (o, Tlpole)* 0o2¥0) ) + (@0, Tl ol o) <o

Interacting theory. Wish to apply the Gell-Mann-Low for@aul

(Wo, T { pol@) *...x pofan)* exp|—iA [ dy® Hy")| } @
(Po, T exp|—i [ dy® Hiy")] Ty)

G(xl,...,xn) =

(27)
Herep, =free "in" field, andH;(z") is the interaction
Hamiltonian in the interaction representation.

Same heuristic derivation.@f{27):.-0nly: timesdifferanamsiyve



Choose

i) =) [ i@ a(@)= polo) ox ol

N

m times

This is a well-defined, Hermitean operator, with zero v.e.v.
Expanding thexp we evaluate the gener{@(\") term in the
numerator or denominator as in the undeformed case: agply
Wick Thm to the field monomial and,: M : ¥y =0 we find
exactly thesameintegrals overy-variables of products of free
propagators having coordinate differences as argumeath E
term is represented by a Feynman diagram. S@ieen’s
functions coincide with the undeformed onesind can be
computed by Feynman diagrams with the undef. Feynman r
So, at least perturbativelthis QFT is completely equivalent to
the undeformed one(no more pathologies like UV-IR mixing!’
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Conclusions. What do we learn?

Glass: half full or half empty?

Various approaches to QFT on NC spaces. Operator or
(as by[Doplicher, Fredenhagen, Roberts, Bahns, Piacij
on (deformed) Minkowski spaces look safer starting poi
but still no completely satisfactory guiding principle.

Twisting or not Poincare group, and doing it properly,
makes radical differences.

A sensible theory with twisted Poincaré seems possible
equivalent to the undeformed one. Avoids all complicati
(IV-UR, causality/unitarity violation, statistics vidian,
cluster property violation,...).

Obtained by matching operatar, ') and spacetime
noncommutativities semehow te-compensateeach-othk



No new physics, nor a more satisfactory formulation of «
one (e.g. by an inthrinsic UV reqgularization)...
... but can be used as a Lab to:

1. look for and test equivalent formulations of QFT on
NC spaces: Wick rotation into EQFT, path integral
guantization, etc.;

2. clarify notions asymptotic states, spin-statisticsTCP
etc., on NC spaces;

3. properly formulate covariance properties of fields
under twisted symmetries (R{ and clarify their
connection to the ordinary ones.

4. properly formulate gauge field theory on NC space:
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