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Abstract
In the framework of Euclidean field theory we show that an infrared safe slightly
modified version of Zimmermann’s subtraction scheme generates the perturbative
solutions to the Wilson-Polchinski renormalization group equations. ! 2

'More details in: http://www.ge.infn.it /~becchi/prague-2007.pdf
*The 1-P.I. R.G. equations: M. Bonini et al., Nucl.Phys.B409 (1993) 441
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We consider an Euclidean scalar field theory in 4 dimensions
cut-off Fourier transformed propagator:
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. Introducing the UV-IR

one defines the 1-P.I Effective Action Vi », whose evolution equation is represented

in the figure:
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where double lines correspond to the propagator S and the

crossed double one to S

while circles correspond to the 1-Pl parts generated by Vi a,.



Expanding:
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and introducing an analogous expansion for Rj a,[¢] one translates the evolution
equation into an infinite system of integral equations for the coefficients:
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and, for n + k > 4,

3;“ V 0}1? "y Pras i'ﬁ'i. 1"&[} / e a.& ﬂujl',‘ s Pns A: ‘ﬁiﬂ)
Ao

If R, ~ A*"r,(p/A) , up to logs and A;' corrections, the choice of boundary
conditions is unique if V} 4, is required to be regular in the Ay — oo limit.



On the other hand one can show that if
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where P, is a polynomial, an analogous bound holds true for every single contri-
bution to @;“ R.(p1, s pny A, Ag) uniformly in Ay.

Thus, at least in a perturbative construction (i ordered) in which at every order
 R.(p1, -, pas A, Ag) receives a finite number of contributions one has:

e an analogous bound holds true for 8;“ R, (p1,-, P, Ay Ap) uniformly in A,,.
e the iterative the solutions of the integral equations satisfy the same bound

e the iterative the solutions of the integral equations have a regular U.V. (Ay —
oo) limit which coincides with the iterative solution to the integral equations
in the U.V. limit.



We want to show that in the A; — o limit an alternative construc-
tion to the iterative, loop expanded, solutions of the R.G. integral equa-
tions is given by an Euclidean variant of Zimmermann’s (Lowenstein-
Zimmermann) subtraction method.

The unsubtracted, and hence possibly divergent, Feynman integral mlleqpmldm%
to the diagram I' contributing to a 2n external leg, m loop, Schwinger function Sgn

has the form:
a4k
50(0) = [ Gy Ir(p:R).

where &k = ky,.....k,, is a basis of internal momenta of the diagram and p =
D1y -y Pan—1 & basis of external momenta.

Ir(p, k) is built with the propagator:

and vertices
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The subtraction procedure consists in replacing It (p, k) with the renowned forest

formula:
Rr(p,k) = Sr Z H (—thnr)IrU}.k) :
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where:
e Fr is the set of all forests of I
e S, defines the momentum routing of the sub-diagram -y

# ti takes the p¥) Taylor expansion of I,(p, k) up to degree d., the superficial
divergence of -,

2 tﬁ. replaces A with A in the propagators

Notice the analogy with Lowenstein-Zimmermann’s scheme.



Let us call Va[¢] the functional generator of the subtracted 1-P.I. Feynman am-
plitudes.

We have to show that its coefficient functions V,(p, A) satisfy the above system
of integral evolution equations in the limit A, — oc.

We consider the A-derivative of a generic subtracted Feynman integral corre-
sponding to a 1-PI diagram and hence contributing to V,.

e Due to the absolute convergence of the momentum integral we are allowed to
commute the A-derivative with the momentum integration.

e Un-subtracted Feynman integrands depends on A only through the propaga-
tors &

e Sub-diagram subtraction terms generated by the Taylor operators t&v are A-
independent since they are computed at A = Ap.



For a generic 1-PI diagram [ one has:

Rr(p, k) = (1 — t{") Rr(p, k)
where
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and F7 is the set of forests not containing I" as an element.
OrBr(p, k) = 311?3?(1}, k),

Let F' € F} be a forest with disjoint elements ¥; € F,
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It is possible to reorganize the above sum over forests getting:
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In this equation the reduced diagram I'/([].c7 ) is built with the lines and vertices
of I' not belonging to any element of F' and of a further set of vertices corresponding
to the elements 4 of F' shrunk to point vertices.

Then:
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where I'/([Tyer YU 1) = T'/(Tlyer ) /1.



Now we interchange the sum over the forests with that over the line [ getting:

A?On2Rr(p, k) = Z p£+h)8r Z H t-S' Mru(p, k) .
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The following remarks are in order:
o If I'is 1-PI, I'/l is a chain 1-PI sub-diagrams pairwise connected by lines.

e Thus I, (p, k) factorizes into a chain of line and 1-PI factors v; , i = 0,- - -n
closed by the line [.

e A forest F' in I'/l appears as the union of, possibly trivial, forests in the 1-PI
factors.



Therefore the sum over the forests in I'/l decomposes into the product of the sums
over the forests in the «;’s and one has:
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Summing over all the possible diagrams it clearly appears that the structure of the
right-hand side of this equation coincides with the chain structure of the right-hand
side of the evolution equation of the effective proper generator V, . [¢]. Furthermore:

e One should verify that the combinatorial factors, starting from 1/2 in the
evolution equation, combine correctly. This is however fairly obvious.

e The forest formula guarantees that the integral equations for the coeflicients
Va(p, A) and Vy(p, A) contain the correct boundary values at Ag.

e And a standard analysis shows that V,(p, A) satisfies the bound given above
for |0F Va(p1, -, Pn, A, 00)|.



In conclusion, comparing the R-G and subtraction approach one has :

e In both cases one is dealing with an infinity of quantities and hence the chosen
ordering is crucial.

e The subtraction approach deals with diagrams and hence the resulting ampli-
tudes depend on the ordering of diagrams ( loop ordering, ..)

e The R-G integral equations are not strictly related to diagrams, hence a wider
class of recursive construction is in principle open

e However the right-hand side of the evolution equation is the sum of a series,
and such appear the integral equations for the coeflicients due to the two point
insertions.

e Therefore, either one refers to a perturbative framework, in which the right-
hand side is a finite sum,

e Or one has to use, for A big enough, precise bounds for the full propagator and
for the amplitudes constructed iteratively. This is excluded e.g in 4-d scalar
field theories due e.g. to the mass problem.



