Zimmermann's subtraction scheme and the perturbative solution to R.G. evolution equations

January 31, 2008

Abstract

In the framework of Euclidean field theory we show that an infrared safe slightly modified version of Zimmermann's subtraction scheme generates the perturbative solutions to the Wilson-Polchinski renormalization group equations. $^{1-2}$

¹More details in: http://www.ge.infn.it/~becchi/prague-2007.pdf

²The 1-P.I. R.G. equations: M. Bonini et al., Nucl.Phys.B409 (1993) 441

We consider an Euclidean scalar field theory in 4 dimensions. Introducing the UV-IR cut-off Fourier transformed propagator:

$$\tilde{\hat{S}}(p) = \frac{e^{-\frac{p^2}{\Lambda_0^2}} - e^{-\frac{p^2}{\Lambda^2}}}{p^2}$$

and

$$\Lambda^2 \frac{\partial}{\partial \Lambda^2} \tilde{\hat{S}}(p) \equiv \dot{\tilde{\hat{S}}}(p) = -\frac{e^{-\frac{p^2}{\Lambda^2}}}{\Lambda^2} .$$

one defines the 1-P.I Effective Action V_{Λ,Λ_0} whose evolution equation is represented in the figure:

$$\Lambda \partial_{\Lambda} V_{\Lambda,\Lambda_0} \equiv \Lambda \partial_{\Lambda}$$
 $= \mathbb{R} \Lambda \partial_{\Lambda}$ $+ \cdots \equiv R_{\Lambda,\Lambda_0}$

where double lines correspond to the propagator \hat{S} and the crossed double one to \hat{S} while circles correspond to the 1-PI parts generated by V_{Λ,Λ_0} .

Expanding:

$$V_{\Lambda,\Lambda_0}[\phi] = \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} (dp_i \tilde{\phi}(p_i)) \delta(\sum_{j=1}^{n} p_j) V_n(p_1, \dots, p_n, \Lambda, \Lambda_0)$$

and introducing an analogous expansion for $R_{\Lambda,\Lambda_0}[\phi]$ one translates the evolution equation into an infinite system of integral equations for the coefficients:

$$V_2(0,0,\Lambda,\Lambda_0) = \mu^2 + \int_{\Lambda_R}^{\Lambda} \frac{d\lambda}{\lambda} R_2(0,0,\lambda,\Lambda_0)$$

$$\partial_{p^2} V_2(p,-p,\Lambda,\Lambda_0)|_{p=0} = \zeta^2 + \int_{\Lambda_R}^{\Lambda} \frac{d\lambda}{\lambda} \partial_{p^2} R_2(p,-p,\lambda,\Lambda_0)|_{p=0}$$

$$V_4(0,\cdot,0,\Lambda,\Lambda_0) = g + \int_{\Lambda_R}^{\Lambda} \frac{d\lambda}{\lambda} R_4(0,\cdot,0,\lambda,\Lambda_0) ,$$

and, for n + k > 4,

$$\partial_p^k V_n(p_1, \dots, p_n, \Lambda, \Lambda_0) = \int_{\Lambda_0}^{\Lambda} \frac{d\lambda}{\lambda} \, \partial_p^k \, R_n(p_1, \dots, p_n, \lambda, \Lambda_0)$$

If $R_n \sim \Lambda^{4-n} r_n(p/\Lambda)$, up to logs and Λ_0^{-1} corrections, the choice of boundary conditions is unique if V_{Λ,Λ_0} is required to be regular in the $\Lambda_0 \to \infty$ limit.

On the other hand one can show that if

$$\sup |\partial_q^k V_n(p_1, \dots, p_n, \Lambda, \Lambda_0)| \le \Lambda^{4-n-k} P_{n,k} \left(p_1, \dots, p_n, \log \left(\frac{\Lambda}{\Lambda_R} \right) \right)$$

where $P_{n,k}$ is a polynomial, an analogous bound holds true for every single contribution to $\partial_q^k R_n(p_1, \dots, p_n, \Lambda, \Lambda_0)$ uniformly in Λ_0 .

Thus, at least in a perturbative construction (\hbar ordered) in which at every order $\partial_q^k R_n(p_1, \dots, p_n, \Lambda, \Lambda_0)$ receives a finite number of contributions one has:

- an analogous bound holds true for $\partial_q^k R_n(p_1, \dots, p_n, \Lambda, \Lambda_0)$ uniformly in Λ_0 .
- the iterative the solutions of the integral equations satisfy the same bound
- the iterative the solutions of the integral equations have a regular U.V. ($\Lambda_0 \to \infty$) limit which coincides with the iterative solution to the integral equations in the U.V. limit.

We want to show that in the $\Lambda_0 \to \infty$ limit an alternative construction to the iterative, loop expanded, solutions of the R.G. integral equations is given by an Euclidean variant of Zimmermann's (Lowenstein-Zimmermann) subtraction method.

The unsubtracted, and hence possibly divergent, Feynman integral corresponding to the diagram Γ contributing to a 2n external leg, m loop, Schwinger function $S_{2n}^{(m)}$ has the form:

$$S_{\Gamma}(p) = \int \frac{d^{4m}k}{(2\pi)^{4m}} I_{\Gamma}(p,k) ,$$

where $k \equiv k_1, ..., k_m$ is a basis of internal momenta of the diagram and $p \equiv p_1, ..., p_{2n-1}$ a basis of external momenta.

 $I_{\Gamma}(p,k)$ is built with the propagator:

$$\tilde{\hat{S}}(p) = \frac{1 - e^{-\frac{p^2}{\Lambda^2}}}{p^2}$$

and vertices

$$(\mu^2 \phi^2 + \zeta^2 (\partial \phi)^2)/2$$
 , $g\phi^4/4!$

The subtraction procedure consists in replacing $I_{\Gamma}(p, k)$ with the renowned forest formula:

$$R_{\Gamma}(p,k) \equiv \mathcal{S}_{\Gamma} \sum_{F \in \mathcal{F}_{\Gamma}} \prod_{\gamma \in F} (-t_{\gamma}^{d} \mathcal{S}_{\gamma}) I_{\Gamma}(p.k)$$
.

where:

- \mathcal{F}_{Γ} is the set of all forests of Γ
- S_{γ} defines the momentum routing of the sub-diagram γ
- t_{γ}^d takes the $\hat{p}^{(\gamma)}$ Taylor expansion of $I_{\gamma}(p,k)$ up to degree d_{γ} , the superficial divergence of γ ,
- t_{γ}^{d} replaces Λ with Λ_{R} in the propagators

Notice the analogy with Lowenstein-Zimmermann's scheme.

Let us call $\mathcal{V}_{\Lambda}[\phi]$ the functional generator of the subtracted 1-P.I. Feynman amplitudes.

We have to show that its coefficient functions $\mathcal{V}_n(p,\Lambda)$ satisfy the above system of integral evolution equations in the limit $\Lambda_0 \to \infty$.

We consider the Λ -derivative of a generic subtracted Feynman integral corresponding to a 1-PI diagram and hence contributing to \mathcal{V}_{Λ} .

- Due to the absolute convergence of the momentum integral we are allowed to commute the Λ -derivative with the momentum integration.
- \bullet Un-subtracted Feynman integrands depends on Λ only through the propagators \hat{S}
- Sub-diagram subtraction terms generated by the Taylor operators $t_{\gamma}^{d_{\gamma}}$ are Λ -independent since they are computed at $\Lambda = \Lambda_R$.

For a generic 1-PI diagram Γ one has:

$$R_{\Gamma}(p,k) = (1 - t_{\Gamma}^{d_{\Gamma}}) \hat{R}_{\Gamma}(p,k)$$

where

$$\hat{R}_{\Gamma}(p,k) = \mathcal{S}_{\Gamma} \sum_{F \in \mathcal{F}'_{\Gamma}} \prod_{\gamma \in F} (-t^{d}_{\gamma} \mathcal{S}_{\gamma}) I_{\Gamma}(p.k)$$

and \mathcal{F}'_{Γ} is the set of forests not containing Γ as an element.

$$\partial_{\Lambda} R_{\Gamma}(p,k) = \partial_{\Lambda} \hat{R}_{\Gamma}(p,k) ,$$

Let $\bar{F} \in \bar{\mathcal{F}}'_{\Gamma}$ be a forest with disjoint elements $\bar{\gamma}_i \in \bar{F}$,

It is possible to reorganize the above sum over forests getting:

$$\hat{R}_{\Gamma}(p,k) = \mathcal{S}_{\Gamma} \sum_{\bar{F} \in \bar{\mathcal{F}}_{\Gamma}'} \left[\prod_{\bar{\gamma} \in \bar{F}} ((-t_{\bar{\gamma}}^{d_{\bar{\gamma}}} \mathcal{S}_{\bar{\gamma}}) \hat{R}_{\bar{\gamma}}(p,k)) \right] I_{\Gamma/(\prod_{\bar{\gamma} \in \bar{F}} \gamma)}(p,k)$$

In this equation the reduced diagram $\Gamma/(\prod_{\gamma\in\bar{F}}\gamma)$ is built with the lines and vertices of Γ not belonging to any element of \bar{F} and of a further set of vertices corresponding to the elements $\bar{\gamma}$ of \bar{F} shrunk to point vertices.

Then:

$$\Lambda^{2} \partial_{\Lambda^{2}} R_{\Gamma}(p, k) = \mathcal{S}_{\Gamma} \sum_{\bar{F} \in \bar{\mathcal{F}}'_{\Gamma}} \left[\prod_{\bar{\gamma} \in \bar{F}} ((-t_{\bar{\gamma}}^{d_{\bar{\gamma}}} \mathcal{S}_{\bar{\gamma}}) \hat{R}_{\bar{\gamma}}(p, k)) \right] \\
\sum_{l \in L(\Gamma/(\prod_{\bar{\gamma} \in \bar{F}} \bar{\gamma}))} \dot{\hat{S}}(p_{l} + k_{l}) I_{\Gamma/(\prod_{\bar{\gamma} \in \bar{F}} \bar{\gamma} \cup l)}(p, k)$$

where $\Gamma/(\prod_{\gamma\in\bar{F}}\gamma\cup l)=\Gamma/(\prod_{\gamma\in\bar{F}}\gamma)/l$.

Now we interchange the sum over the forests with that over the line l getting:

$$\Lambda^2 \partial_{\Lambda^2} R_{\Gamma}(p,k) = \sum_{l \in L(\Gamma)} \dot{\hat{S}}(p_l + k_l) \mathcal{S}_{\Gamma} \sum_{F \in \mathcal{F}_{\Gamma/l}} \prod_{\gamma \in F} (-t_{\gamma}^d \mathcal{S}_{\gamma}) I_{\Gamma/l}(p,k) .$$

The following remarks are in order:

- If Γ is 1-PI, Γ/l is a chain 1-PI sub-diagrams pairwise connected by lines.
- Thus $I_{\Gamma/l}(p,k)$ factorizes into a chain of line and 1-PI factors γ_i , $i=0,\cdots n$ closed by the line l.
- A forest F in Γ/l appears as the union of, possibly trivial, forests in the 1-PI factors.

Therefore the sum over the forests in Γ/l decomposes into the product of the sums over the forests in the γ_i 's and one has:

$$\Lambda^2 \partial_{\Lambda^2} R_{\Gamma}(p,k) = \mathcal{S}_{\Gamma} \sum_{l \in L(\Gamma)} \dot{\hat{S}} \left(p_l + k_l \right) R_{\gamma_0}(p,k) \prod_{i=1}^n \left[\hat{S}(p_i + k_i) \right) R_{\gamma_i}(p,k) \right] .$$

Summing over all the possible diagrams it clearly appears that the structure of the right-hand side of this equation coincides with the chain structure of the right-hand side of the evolution equation of the effective proper generator $V_{\Lambda,\infty}[\phi]$. Furthermore:

- One should verify that the combinatorial factors, starting from 1/2 in the evolution equation, combine correctly. This is however fairly obvious.
- The forest formula guarantees that the integral equations for the coefficients $V_2(p,\Lambda)$ and $V_4(p,\Lambda)$ contain the correct boundary values at Λ_R .
- And a standard analysis shows that $\mathcal{V}_n(p,\Lambda)$ satisfies the bound given above for $|\partial_q^k V_n(p_1, \dots, p_n, \Lambda, \infty)|$.

In conclusion, comparing the R-G and subtraction approach one has:

- In both cases one is dealing with an infinity of quantities and hence the chosen ordering is crucial.
- The subtraction approach deals with diagrams and hence the resulting amplitudes depend on the ordering of diagrams (loop ordering, ..)
- The R-G integral equations are not strictly related to diagrams, hence a wider class of recursive construction is *in principle* open
- However the right-hand side of the evolution equation is the sum of a series, and such appear the integral equations for the coefficients due to the two point insertions.
- Therefore, either one refers to a perturbative framework, in which the right-hand side is a finite sum,
- Or one has to use, for Λ big enough, precise bounds for the full propagator and for the amplitudes constructed iteratively. This is excluded e.g in 4-d scalar field theories due e.g. to the mass problem.