# Thermodynamics of holographic models for QCD in the Veneziano limit

Timo Alho

University of Jyväskylä

July 30th 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Veneziano QCD

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Veneziano QCD is a YM theory with  $N_c$  colors and  $N_f$  fermion flavors, at the limit  $N_c, N_f \to \infty$  but  $x_f \equiv \frac{N_f}{N_c}$  constant.

#### Veneziano QCD

Veneziano QCD is a YM theory with  $N_c$  colors and  $N_f$  fermion flavors, at the limit  $N_c, N_f \to \infty$  but  $x_f \equiv \frac{N_f}{N_c}$  constant. The holographic model and its vacuum structure described in arXiv:1112.1261, and in the previous talk by Järvinen. For studying the thermodynamics, we add a black hole to the bulk.

#### Action

To recap the setup, the gravity action is

$$S = M^3 N_c^2 \int d^5 x \,\mathcal{L} \equiv \frac{1}{16\pi G_5} \int d^5 x \,\mathcal{L},\tag{1}$$

where

$$\mathcal{L} = \left[ \sqrt{-g} \left( R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right)$$
(2)  
$$- V_f(\lambda, \tau) \sqrt{\det\left(g_{ab} + \kappa(\lambda, \tau)(D_a T)^*(D_b T) + \omega(\lambda, \tau)F_{ab}\right)} \right].$$

The metric Ansatz is

$$ds^{2} = b^{2}(r) \left[ -f(r)dt^{2} + d\mathbf{x}^{2} + \frac{dr^{2}}{f(r)} \right],$$
 (3)

and the two scalar functions,  $1/\lambda$  sourcing  $F^2$  and  $\tau$  sourcing  $\langle \bar{q}q\rangle,$  are

$$\lambda = \lambda(r) = e^{\phi(r)}, \quad \tau = \tau(r), \text{ where } T = \tau \mathbb{1}. \tag{4}$$

### Finite chemical potential

Field theory chemical potential is dual to the bulk U(1) gauge field  $A_{\mu}$ .

- Matter at rest  $\Rightarrow A_i = 0$  for i = 1, 2, 3
- Gauge transformation  $\Rightarrow A_5 = 0$ , and  $\tau$  stays real
- Only  $A_0$  is left.
- e.o.m. for  $A_0$  is cyclic
- Solving the eo.m.,  $A_0$  is expressed in terms of the other fields:

$$A_{0}'(r) = -\frac{b^{2}}{\mathcal{L}_{A}^{2}\kappa}\sqrt{\left(1 + \frac{f\kappa}{b^{2}}\dot{\tau}^{2}\right)\frac{\tilde{n}_{1}^{2}}{\tilde{n}_{1}^{2} + (b^{3}\kappa V_{f})^{2}}}.$$
 (5)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ のへで

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Gravity equations solved numerically, with boundary conditions set at the horizon:

• Gauge field  $A_{\mu}(r_h) = 0$ ,  $A'_{\mu}(r_h)$  sets n and  $\mu$ . This is replaced with the integration constant  $\tilde{n}_1$  from the previous slide.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Gravity equations solved numerically, with boundary conditions set at the horizon:

- Gauge field  $A_{\mu}(r_h) = 0$ ,  $A'_{\mu}(r_h)$  sets n and  $\mu$ . This is replaced with the integration constant  $\tilde{n}_1$  from the previous slide.
- at  $\tilde{n}_1 = 0$ ,  $\lambda(r_h) \equiv \lambda_h$  determines the temperature.

Gravity equations solved numerically, with boundary conditions set at the horizon:

- Gauge field  $A_{\mu}(r_h) = 0$ ,  $A'_{\mu}(r_h)$  sets n and  $\mu$ . This is replaced with the integration constant  $\tilde{n}_1$  from the previous slide.
- at  $\tilde{n}_1 = 0$ ,  $\lambda(r_h) \equiv \lambda_h$  determines the temperature.
- With  $\tilde{n}_1$  finite, the pair  $(\tilde{n}_1, \lambda_h)$  determine the temperature and chemical potential together.

Gravity equations solved numerically, with boundary conditions set at the horizon:

- Gauge field  $A_{\mu}(r_h) = 0$ ,  $A'_{\mu}(r_h)$  sets n and  $\mu$ . This is replaced with the integration constant  $\tilde{n}_1$  from the previous slide.
- at  $\tilde{n}_1 = 0$ ,  $\lambda(r_h) \equiv \lambda_h$  determines the temperature.
- With  $\tilde{n}_1$  finite, the pair  $(\tilde{n}_1, \lambda_h)$  determine the temperature and chemical potential together.
- $\tau(r_h) \equiv \tau_h$  determines the (degenerate) quark mass via  $\tau(r) \propto m_q r \log(r)^a$  at the limit of small r

Gravity equations solved numerically, with boundary conditions set at the horizon:

- Gauge field  $A_{\mu}(r_h) = 0$ ,  $A'_{\mu}(r_h)$  sets n and  $\mu$ . This is replaced with the integration constant  $\tilde{n}_1$  from the previous slide.
- at  $\tilde{n}_1 = 0$ ,  $\lambda(r_h) \equiv \lambda_h$  determines the temperature.
- With  $\tilde{n}_1$  finite, the pair  $(\tilde{n}_1, \lambda_h)$  determine the temperature and chemical potential together.
- $\tau(r_h) \equiv \tau_h$  determines the (degenerate) quark mass via  $\tau(r) \propto m_q r \log(r)^a$  at the limit of small r

Want  $m_q = 0$ :

Gravity equations solved numerically, with boundary conditions set at the horizon:

- Gauge field  $A_{\mu}(r_h) = 0$ ,  $A'_{\mu}(r_h)$  sets n and  $\mu$ . This is replaced with the integration constant  $\tilde{n}_1$  from the previous slide.
- at  $\tilde{n}_1 = 0$ ,  $\lambda(r_h) \equiv \lambda_h$  determines the temperature.
- With  $\tilde{n}_1$  finite, the pair  $(\tilde{n}_1, \lambda_h)$  determine the temperature and chemical potential together.
- $\tau(r_h) \equiv \tau_h$  determines the (degenerate) quark mass via  $\tau(r) \propto m_q r \log(r)^a$  at the limit of small r

Want  $m_q = 0$ :

• chiral symmetry intact  $\Rightarrow \tau(r) \equiv 0$ 

Gravity equations solved numerically, with boundary conditions set at the horizon:

- Gauge field  $A_{\mu}(r_h) = 0$ ,  $A'_{\mu}(r_h)$  sets n and  $\mu$ . This is replaced with the integration constant  $\tilde{n}_1$  from the previous slide.
- at  $\tilde{n}_1 = 0$ ,  $\lambda(r_h) \equiv \lambda_h$  determines the temperature.
- With  $\tilde{n}_1$  finite, the pair  $(\tilde{n}_1, \lambda_h)$  determine the temperature and chemical potential together.
- $\tau(r_h) \equiv \tau_h$  determines the (degenerate) quark mass via  $\tau(r) \propto m_q r \log(r)^a$  at the limit of small r

Want  $m_q = 0$ :

- chiral symmetry intact  $\Rightarrow \tau(r) \equiv 0$
- chiral symmetry broken  $\Rightarrow \tau(r) \neq 0$ , but  $m_q = 0$ determines  $\tau_h$  as a function of  $(\tilde{n}_1, \lambda_h)$

# Structure of the solution space, pt. 1



Solutions in both branches exist only in certain regions of the  $(\tilde{n}_1,\lambda_h)$  -space.

- $\lambda_{**}$  bounds the region where the tachyon free solution exists
- $\lambda_{\text{end}}$  bounds the region where the tachyonic solution exists.

#### Thermodynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Any solution to the Einstein equations, corresponding to a pair  $(\tilde{n}_1, \lambda_h)$  and a choice of tachyon or no tachyon, gives

$$T = -\frac{1}{4\pi} f'(r_h; \tilde{n}_1, \lambda_h) \qquad s = \frac{1}{4G_5} b^3(\tilde{n}_1, \lambda_h)$$
$$\mu = \lim_{r \to 0} A_0(r; \tilde{n}_1, \lambda_h) \qquad n = \frac{1}{4\pi \Lambda^3(\tilde{n}_1, \lambda_h)} \tilde{n}_1.$$
(6)

## Structure of the solution space, pt. 2

Mapping the  $(\tilde{n}_1, \lambda_h)$  plane to the  $(\mu, T)$ -plane we find that given a point  $(\mu, T)$ , we have the candidate solutions

- tachyonic vacuum, which can be compactified to any  $\mu, T$
- non-tachyonic black hole, corresponding to a pair  $(\tilde{n}_1, \lambda_h)$
- 0, 1 or 2 tachyonic black holes each corresponding to different (ñ<sub>1</sub>, λ<sub>h</sub>)



### Computing pressure, $\mu = 0$

Pressure from thermodynamics,

$$dp = s \, dT + n \, d\mu. \tag{7}$$

We need to fix the integration constants in the two branches. Consider first the case  $\tilde{n}_1 = 0$  (i.e.  $\mu = 0$ ):

- At the  $\lambda_h \to \infty$  limit, the  $\tau \neq 0$  solution becomes the  $\tau \neq 0$  vacuum solution, i.e.  $p_b(\lambda_h = \infty) = 0$ .
- At  $\lambda_{**}$ , the  $\tau \equiv 0$  solution has  $T = 0 \Leftrightarrow$  the  $\tau \equiv 0$  vacuum solution.
- Require that the difference in free energy between these is the same as between the corresponding vacuum solutions

# Computing pressure, $\mu = 0$

Pressure from thermodynamics,

$$dp = s \, dT + n \, d\mu. \tag{7}$$

We need to fix the integration constants in the two branches. Consider first the case  $\tilde{n}_1 = 0$  (i.e.  $\mu = 0$ ):

- At the  $\lambda_h \to \infty$  limit, the  $\tau \neq 0$  solution becomes the  $\tau \neq 0$  vacuum solution, i.e.  $p_b(\lambda_h = \infty) = 0$ .
- At  $\lambda_{**}$ , the  $\tau \equiv 0$  solution has  $T = 0 \Leftrightarrow$  the  $\tau \equiv 0$  vacuum solution.
- Require that the difference in free energy between these is the same as between the corresponding vacuum solutions
- $\Rightarrow \text{ numerically equivalent to requiring that } p_s(\lambda_{\text{end}}) = p_b(\lambda_{\text{end}})!$

### Path independence of pressure

Pressure from

$$dp = sdT + nd\mu$$

must be path independent. This is indeed verified numerically, which is a very non-trivial check of the model and our numerics.



# Computing pressure, $\mu > 0$

Given that integrating dp is path independent, we can now fix pressure on the whole  $(\mu, T)$  -plane:

- $p(\lambda_h, \tilde{n}_1 = 0)$  is known for both branches, so first we can integrate along lines of constant  $\lambda_h$ , starting from  $\tilde{n}_1 = 0$ , and define the pressure along these curves
- then the pressure is defined along  $\tilde{n}_1 = \text{const.}$  lines by integrating from any intersection with a  $\lambda_h = \text{const.}$ -line. Multiple intersections give the same constant due to path independence. In practice we use that as a running check on the sensibility of the numerics.
- the above is done separately for the chirally symmetric branch and non-symmetric branch.

# Phase diagram, $x_f = 1$

- 日本 - 4 日本 - 4 日本 - 日本

Since we can calculate the pressure, we can determine the stable phase at any  $(\mu, T)$ . This gives us the phase diagram:



### How do we end up with the above:



- T = 0 curve maps to the T = 0 line on the  $(\mu, T)$  -plane.
- $\lambda_{\chi s}$ , chiral transition on the symmetric phase. The critical point is where  $\lambda_{\chi s}$  and  $\lambda_{\chi b}$  separate.
- $\lambda_{\chi b}$ , chiral transition on the non-symmetric phase. Turns out it's the same as  $\lambda_{end}$ .
- at  $\lambda_H$ ,  $p_b(\lambda_H) = 0$ , is the deconfinement transition (out of the picture)

### Outlook

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Mapping out the finite  $T, \mu$  phase diagram as a function of  $x_f$ .

# Outlook

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Mapping out the finite  $T, \mu$  phase diagram as a function of  $x_f$ .
- Constraining the potentials by matching to QCD

# Outlook

・ロト ・ 日 ・ モー・ モー・ うへぐ

- Mapping out the finite  $T, \mu$  phase diagram as a function of  $x_f$ .
- Constraining the potentials by matching to QCD
- Moving towards the current best candidate potential

#### That's all, folks! Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?