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Veneziano QCD

Veneziano QCD is a YM theory with Nc colors and Nf fermion

flavors, at the limit Nc, Nf →∞ but xf ≡
Nf

Nc
constant.

The holographic model and its vacuum structure described in
arXiv:1112.1261, and in the previous talk by Järvinen. For
studying the thermodynamics, we add a black hole to the bulk.
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Action
To recap the setup, the gravity action is

S = M3N2
c

∫
d5xL ≡ 1

16πG5

∫
d5xL, (1)

where

L =

[√
−g
(
R− 4

3

(∂λ)2

λ2
+ Vg(λ)

)
(2)

−Vf (λ, τ)
√

det (gab + κ(λ, τ)(DaT )∗(DbT ) + ω(λ, τ)Fab)
]
.

The metric Ansatz is

ds2 = b2(r)

[
−f(r)dt2 + dx2 +

dr2

f(r)

]
, (3)

and the two scalar functions, 1/λ sourcing F 2 and τ sourcing
〈q̄q〉, are

λ = λ(r) = eφ(r), τ = τ(r),where T = τ1. (4)



Finite chemical potential

Field theory chemical potential is dual to the bulk U(1) gauge
field Aµ.

• Matter at rest ⇒ Ai = 0 for i = 1, 2, 3

• Gauge transformation ⇒ A5 = 0, and τ stays real

• Only A0 is left.

• e.o.m. for A0 is cyclic

• Solving the eo.m., A0 is expressed in terms of the other
fields:

A′0(r) = − b2

L2Aκ

√(
1 +

fκ

b2
τ̇2
)

ñ21
ñ21 + (b3κVf )2

. (5)



Boundary conditions

Gravity equations solved numerically, with boundary conditions
set at the horizon:

• Gauge field Aµ(rh) = 0, A′µ(rh) sets n and µ. This is
replaced with the integration constant ñ1 from the previous
slide.

• at ñ1 = 0, λ(rh) ≡ λh determines the temperature.

• With ñ1 finite, the pair (ñ1, λh) determine the temperature
and chemical potential together.

• τ(rh) ≡ τh determines the (degenerate) quark mass via
τ(r) ∝ mqr log(r)a at the limit of small r

Want mq = 0:

• chiral symmetry intact ⇒ τ(r) ≡ 0

• chiral symmetry broken ⇒ τ(r) 6= 0, but mq = 0
determines τh as a function of (ñ1, λh)
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Boundary conditions

Gravity equations solved numerically, with boundary conditions
set at the horizon:

• Gauge field Aµ(rh) = 0, A′µ(rh) sets n and µ. This is
replaced with the integration constant ñ1 from the previous
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Structure of the solution space, pt. 1
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Solutions in both branches exist only in certain regions of the
(ñ1, λh) -space.

• λ∗∗ bounds the region where the tachyon free solution exists

• λend bounds the region where the tachyonic solution exists.



Thermodynamics

Any solution to the Einstein equations, corresponding to a pair
(ñ1, λh) and a choice of tachyon or no tachyon, gives

T = − 1
4πf

′(rh; ñ1, λh) s =
1

4G5
b3(ñ1, λh)

µ = limr→0A0(r; ñ1, λh) n =
1

4πΛ3(ñ1, λh)
ñ1.

(6)



Structure of the solution space, pt. 2
Mapping the (ñ1, λh) plane to the (µ, T ) -plane we find that
given a point (µ, T ), we have the candidate solutions

• tachyonic vacuum, which can be compactified to any µ, T

• non-tachyonic black hole, corresponding to a pair (ñ1, λh)

• 0, 1 or 2 tachyonic black holes each corresponding to
different (ñ1, λh)
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Computing pressure, µ = 0

Pressure from thermodynamics,

dp = s dT + ndµ.

(7)

We need to fix the integration constants in the two branches.
Consider first the case ñ1 = 0 (i.e. µ = 0):

• At the λh →∞ limit, the τ 6= 0 solution becomes the τ 6= 0
vacuum solution, i.e. pb(λh =∞) = 0.

• At λ∗∗, the τ ≡ 0 solution has T = 0 ⇔ the τ ≡ 0 vacuum
solution.

• Require that the difference in free energy between these is
the same as between the corresponding vacuum solutions

⇒ numerically equivalent to requiring that ps(λend) = pb(λend)!
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Path independence of pressure
Pressure from

dp = sdT + ndµ

must be path independent. This is indeed verified numerically,
which is a very non-trivial check of the model and our numerics.
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Computing pressure, µ > 0

Given that integrating dp is path independent, we can now fix
pressure on the whole (µ, T ) -plane:

• p(λh, ñ1 = 0) is known for both branches, so first we can
integrate along lines of constant λh, starting from ñ1 = 0,
and define the pressure along these curves

• then the pressure is defined along ñ1 = const. lines by
integrating from any intersection with a λh = const. -line.
Multiple intersections give the same constant due to path
independence. In practice we use that as a running check
on the sensibility of the numerics.

• the above is done separately for the chirally symmetric
branch and non-symmetric branch.



Phase diagram, xf = 1

Since we can calculate the pressure, we can determine the stable
phase at any (µ, T ). This gives us the phase diagram:
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How do we end up with the above:

Λ**, T = 0
Λend, ΛΧb

ΛΧs
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• T = 0 curve maps to the T = 0 line on the (µ, T ) -plane.
• λχs, chiral transition on the symmetric phase. The critical

point is where λχs and λχb separate.
• λχb, chiral transition on the non-symmetric phase. Turns

out it’s the same as λend.
• at λH , pb(λH) = 0, is the deconfinement transition (out of

the picture)



Outlook

• Mapping out the finite T, µ phase diagram as a function of
xf .

• Constraining the potentials by matching to QCD

• Moving towards the current best candidate potential
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That’s all, folks! Thank you!
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