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Veneziano QCD

Veneziano QCD is a YM theory with V. colors and N fermion

flavors, at the limit N., Ny — oo but zy = % constant.
The holographic model and its vacuum structure described in
arXiv:1112.1261, and in the previous talk by Jarvinen. For

studying the thermodynamics, we add a black hole to the bulk.



Action

To recap the setup, the gravity action is

S = M3N3/d5m£ = 16;05 /d%c, (1)
where
- [F (r- 39 +v) 2)

= Vi 7)Aot (gap + KO 1) (DT (DVT) + W, 7) Fap) | -

The metric Ansatz is

ds® = b*(r) [—f(r)dt2 +dx? + ;l(:)} , (3)

and the two scalar functions, 1/ sourcing F? and 7 sourcing
(qq), are

A=A(r)=¢e*"), 7 =7(r), where T = 71. (4)



Finite chemical potential

Field theory chemical potential is dual to the bulk U(1) gauge
field A,,.

Matter at rest = A; =0 fori=1,2,3
Gauge transformation = As = 0, and 7 stays real
Only Ay is left.

e.o.m. for Ay is cyclic

Solving the eo.m., Ay is expressed in terms of the other
fields:

b? fr n?
Ay =2 L) M
o(7) LZx ( T’ )ﬁ% n (5)



Boundary conditions

Gravity equations solved numerically, with boundary conditions
set at the horizon:
o Gauge field A, (ry) =0, A}, (r,) sets n and p. This is
replaced with the integration constant 1y from the previous
slide.
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Boundary conditions

Gravity equations solved numerically, with boundary conditions
set at the horizon:

o Gauge field A, (ry) =0, A}, (r,) sets n and p. This is
replaced with the integration constant 1y from the previous
slide.

e at 1 = 0, A(r) = A\, determines the temperature.

e With 7 finite, the pair (1, A;) determine the temperature
and chemical potential together.

e 7(ry) = 71, determines the (degenerate) quark mass via
7(r) oc mgrlog(r)® at the limit of small r

Want m, = 0:
e chiral symmetry intact = 7(r) =0

e chiral symmetry broken = 7(r) # 0, but my; =0
determines 75, as a function of (71, \p)



Structure of the solution space, pt. 1
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Solutions in both branches exist only in certain regions of the
(n1, A\p) -space.

e )., bounds the region where the tachyon free solution exists

® Aonq bounds the region where the tachyonic solution exists.



Thermodynamics

Any solution to the Einstein equations, corresponding to a pair
(n1, An) and a choice of tachyon or no tachyon, gives

) 1o,
T=—Lf(rnin, M) 5= TGSbS(nla)‘h)
1

= lim, A L, A = Ao
o 1My 0 O(T ni h) " 47TA3(n17)‘h)n1

(6)



Structure of the solution space, pt. 2
Mapping the (721, A\p) plane to the (u,T') -plane we find that
given a point (u,T'), we have the candidate solutions
e tachyonic vacuum, which can be compactified to any u, T
e non-tachyonic black hole, corresponding to a pair (71, Ap)

e 0, 1 or 2 tachyonic black holes each corresponding to
different (71, Ap)
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Computing pressure, p = 0

Pressure from thermodynamics,

dp = sdT +ndp.
(7)

We need to fix the integration constants in the two branches.
Consider first the case n; =0 (i.e. u=0):

e At the A, — oo limit, the 7 # 0 solution becomes the 7 # 0
vacuum solution, i.e. py(Ap, = 00) = 0.
e At A, the 7 = 0 solution has T'= 0 < the 7 = 0 vacuum

solution.

e Require that the difference in free energy between these is
the same as between the corresponding vacuum solutions



Computing pressure, p = 0

Pressure from thermodynamics,

dp = sdT +ndp.
(7)

We need to fix the integration constants in the two branches.
Consider first the case n; =0 (i.e. u=0):

e At the A, — oo limit, the 7 # 0 solution becomes the 7 # 0
vacuum solution, i.e. py(Ap, = 00) = 0.

e At A, the 7 = 0 solution has T'= 0 < the 7 = 0 vacuum
solution.

e Require that the difference in free energy between these is
the same as between the corresponding vacuum solutions

= numerically equivalent to requiring that ps(Aend) = Po(Aend)!



Path independence of pressure
Pressure from
dp = sdT' 4+ ndu

must be path independent. This is indeed verified numerically,
which is a very non-trivial check of the model and our numerics.

T/A




Computing pressure, p > 0

Given that integrating dp is path independent, we can now fix
pressure on the whole (u,T') -plane:

e p(Ap,n1 = 0) is known for both branches, so first we can
integrate along lines of constant Ay, starting from n; = 0,
and define the pressure along these curves

e then the pressure is defined along 11 = const. lines by
integrating from any intersection with a A, = const. -line.
Multiple intersections give the same constant due to path
independence. In practice we use that as a running check
on the sensibility of the numerics.

e the above is done separately for the chirally symmetric
branch and non-symmetric branch.



Phase diagram, x; =1

Since we can calculate the pressure, we can determine the stable
phase at any (u, 7). This gives us the phase diagram:
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How do we end up with the above:
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T = 0 curve maps to the 7" = 0 line on the (u,T) -plane.
Ays, chiral transition on the symmetric phase. The critical
point is where A, s and A,; separate.

Aybs chiral transition on the non-symmetric phase. Turns
out it’s the same as Aepg-

at Agr, pp(Am) = 0, is the deconfinement transition (out of
the picture)



Outlook

e Mapping out the finite 7', 4 phase diagram as a function of
xy.
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Outlook

e Mapping out the finite 7', 4 phase diagram as a function of
T
e Constraining the potentials by matching to QCD

e Moving towards the current best candidate potential



That’s all, folks! Thank you!
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