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Goal

• Integrals and integrands of perturbative quantum field theories
• Scattering amplitudes in (super)gravity and their UV behaviour
• Gauge/gravity dualities, AdS/CFT integrability, 

Wilson loops and strong coupling results
• String amplitudes and their implications from/to field-theory
• Mathematical structure of scattering amplitiudes
• Further analytic S-matrix inspired developments

294 Chapter 8 ! Residue Theory
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Figure 8.1 The domain D and contour C and the singular points z1, z2,. . . , zn in the
statement of Cauchy’s residue theorem.

expansion, we seek a method to calculate the residue from special information
about the nature of the singularity at z0.
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The analytic study of scattering amplitudes has given rise to 
an active interaction between high energy physics, 
mathematics and string theory. The purpose of the 
workshop is to bring together leading experts working on 
novel methods for scattering amplitudes in gauge and 
gravity theories, reaching from formal developments to 
phenomenological applications.  The topics to be discussed 
include, but are not limited to:
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Table 3: Same as Table 1, but for the five-point double pentagon diagram in Fig. 1 (c).
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Figure 4: Cut-diagrams of the sevenfold cuts. Starting from the left, we show the diagram of the
cut (1234567), (1245678), (1345678), and (2345678).

They are obtained by multivariate polynomial division using the following bases


























rµ0 = 0µ, eµ1 = pµ4 , eµ2 = pµ3 , eµ3 =
〈4|γµ|3]

2
, eµ4 =

〈3|γµ|4]

2
,

pµ0 = 0µ, τµ1 = pµ5 , τµ2 = pµ1 , τµ3 =
〈5|γµ|1]

2
, τµ4 =

〈1|γµ|5]

2
,

x1 =
(q·p1)
(p5·p1)

, x2 =
(q·p5)
(p5·p1)

, y1 =
(k·p3)
(p3·p4)

, y2 =
(k·p4)
(p3·p4)

;

(3.17)



























rµ0 = 0µ, eµ1 = pµ1 , eµ2 = pµ3 , eµ3,4 =
〈1|4|3]〈3|γµ |1]± 〈3|4|1]〈1|γµ |3]

4
,

pµ0 = −pµ3 , τµ1 = pµ1 , τµ2 = pµ3 , τµ3,4 =
〈1|4|3]〈3|γµ |1]± 〈3|4|1]〈1|γµ |3]
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(p1·p3)
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((q+p3)·τ4)
τ24
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(k·p3)
(p1·p3)

, y4 =
(k·e4)
e24

.
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where the Casimir operator in the fundamental representation is

CF = TF

(

Nc −
1

Nc

)

. (A.24)

Colour diagrams can contain one more kind of elements: 3–gluon vertices ifabc. The
definition (A.8) when written graphically is

= − . (A.25)

Let’s close the quark line onto a gluon:

= − .

Therefore,

=
1
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. (A.26)

This is the final rule of the Cvitanović algorithm: elimination of 3–gluon vertices.
The commutation relation (A.15) can be rewritten graphically, similarly to (A.25):

= − . (A.27)

Sometimes it is easier to use this relation than to follow the Cvitanović algorithm faithfully.
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THE RIEMANN HYPOTHESIS

ENRICO BOMBIERI

1. The Problem

The Riemann zeta function is the function of the complex variable s, defined in
the half-plane1

<(s) > 1 by the absolutely convergent series

⇣(s) :=
1X

n=1

1
ns

,

and in the whole complex plane C by analytic continuation. As shown by Riemann,
⇣(s) extends to C as a meromorphic function with only a simple pole at s = 1, with
residue 1, and satisfies the functional equation

(1) ⇡�s/2�
⇣s

2

⌘
⇣(s) = ⇡�(1�s)/2�

✓
1� s

2

◆
⇣(1� s).

In an epoch-making memoir published in 1859, Riemann [18] obtained an ana-
lytic formula for the number of primes up to a preassigned limit. This formula is
expressed in terms of the zeros of the zeta function, namely the solutions ⇢ 2 C of
the equation ⇣(⇢) = 0.

In this paper, Riemann introduces the function of the complex variable t defined
by

⇠(t) =
1
2
s(s� 1)⇡�s/2�

⇣s

2

⌘
⇣(s),

with s = 1
2 + it, and shows that ⇠(t) is an even entire function of t whose zeros have

imaginary part between �i/2 and i/2. He further states, sketching a proof, that in
the range between 0 and T the function ⇠(t) has about (T/2⇡) log(T/2⇡) � T/2⇡
zeros. Riemann then continues “Man findet nun in der That etwa so viel reelle
Wurzeln innerhalb dieser Grenzen, und es ist sehr wahrscheinlich, dass alle Wurzeln
reell sind,” which can be translated as “Indeed, one finds between those limits about
that many real zeros, and it is very likely that all zeros are real.”

The statement that all zeros of the function ⇠(t) are real is the Riemann hypoth-
esis.

The function ⇣(s) has zeros at the negative even integers �2,�4, . . . and one
refers to them as the trivial zeros. The other zeros are the complex numbers 1

2 + i↵,
where ↵ is a zero of ⇠(t). Thus, in terms of the function ⇣(s), we can state the

Riemann Hypothesis. The nontrivial zeros of ⇣(s) have real part equal to

1
2 .

In the opinion of many mathematicians, the Riemann hypothesis, and its exten-
sion to general classes of L-functions, is probably the most important open problem
in pure mathematics today.

1We denote by <(s) and =(s) the real and imaginary part of the complex variable s. The use
of the variable s is already in Dirichlet’s famous work of 1837 on primes in arithmetic progression.
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2. History and Significance of the Riemann Hypothesis

For references pertaining to the early history of zeta functions and the theory of
prime numbers, we refer to Landau [13] and Edwards [6].

The connection between prime numbers and the zeta function, by means of the
celebrated Euler product

⇣(s) =
Y

p

(1� p�s)�1

valid for <(s) > 1, appears for the first time in Euler’s book Introductio in Analysin

Infinitorum, published in 1748. Euler also studied the values of ⇣(s) at the even
positive and negative integers, and he divined a functional equation, equivalent to
Riemann’s functional equation, for the closely related function

P
(�1)n�1/ns (see

the interesting account of Euler’s work in Hardy’s book [8]).
The problem of the distribution of prime numbers received attention for the first

time with Gauss and Legendre, at the end of the eighteenth century. Gauss, in a
letter to the astronomer Hencke in 1849, stated that he had found in his early years
that the number ⇡(x) of primes up to x is well approximated by the function2

Li(x) =
Z

x

0

dt

log t
.

In 1837, Dirichlet proved his famous theorem of the existence of infinitely many
primes in any arithmetic progression qn+a with q and a positive coprime integers.

On May 24, 1848, Tchebychev read at the Academy of St. Petersburg his first
memoir on the distribution of prime numbers, later published in 1850. It contains
the first study of the function ⇡(x) by analytic methods. Tchebychev begins by
taking the logarithm of the Euler product, obtaining3
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which is his starting point.
Next, he proves the integral formula
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out of which he deduces that (s� 1)⇣(s) has limit 1, and also has finite derivatives
of any order, as s tends to 1 from the right. He then observes that the derivatives
of any order of the left-hand side of (2) can be written as a fraction in which the
numerator is a polynomial in the derivatives of (s � 1)⇣(s), and the denominator
is an integral power of (s � 1)⇣(s), from which it follows that the right-hand side
of (2) has finite derivatives of any order, as s tends to 1 from the right. From this,
he is able to prove that if there is an asymptotic formula for ⇡(x) by means of a
finite sum

P
a

k

x/(log x)k, up to an order O(x/(log x)N ), then a
k

= (k � 1)! for
k = 1, . . . , N � 1. This is precisely the asymptotic expansion of the function Li(x),
thus vindicating Gauss’s intuition.

A second paper by Tchebychev gave rigorous proofs of explicit upper and lower
bounds for ⇡(x), of the correct order of magnitude. Here, he introduces the counting

2The integral is a principal value in the sense of Cauchy.
3Tchebychev uses 1 + ⇢ in place of our s. We write his formulas in modern notation.
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9:30-10:15 Pittau Volovich Trnka Taylor Brandhuber
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