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Abstract

This thesis uses and derives the methods for the calculation of the running couplings

in the Standard Model of Particle Physics. On the basis of the running couplings for the

three gauge couplings and the Higgs quartic coupling, the phenomena of coupling uni�-

cation and the instability of the electroweak vacuum are discussed in search of potential

implications which hint to beyond the Standard Model Physics. For this, the concepts of

Supersymmetric Theories and Grand Uni�cation Theories are discussed in comparison to

the predictions of the Standard Model. The e�ect of adding a pair of fermions charged un-

der SU(3) to the Standard Model is calculated to quantify the change of running couplings

by postulating additional particles and to relate this to the previous discussion.

Abstract

Diese Bachelorarbeit leitet die Methoden der Berechnung von laufenden Kopplungen

im Standardmodell der Teilchenphysik her und verwendet diese. Vor dem Hintergrund der

laufenden Kopplungen der drei Eichkopplungen und der quartischen Higgskopplung werden

die Phänomene der Kopplungsvereinheitlichung und der Stabilität des elektroschwachen

Vakuums diskutiert um Hinweise auf potentielle Physik hinter dem Standardmodell zu

�nden. Hierzu werden die Konzepte von Supersymmetrie und groÿen vereinheitlichenden

Theorien im Vergleich zu den Vorhersagen des Standardmodells diskutiert. Der E�ekt eines

zusätzlichen Paares Fermionen im Standardmodell welches unter SU(3) geladen ist wird

berechnet um die Veränderung in den laufenden Kopplungen bei zusätzlichen postulierten

Teilchen zu quanti�zieren und dies mit der vorherigen Diskussion in Zusammenhang zu

bringen.
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1 Introduction

The physicists at the current generation of particle accelerators have been able to very precisely
measure scatterings and their cross-sections in the Standard Model of Particle Physics. The
last remaining ingredient, the existence of the Higgs boson was recently proved, as in [Aad12].
Therefore the Standard Model is believed to be the most valid description of particle physics
available today. The aim of this thesis is to recreate and collect extrapolations of the Standard
Model into the regions currently unavailable to experiment and see whether any direct or indi-
rect evidence of beyond the Standard Model physics can be found.
Most of the calculations and derivations have been done and studied by a lot of physicists, as
this area of research has been of interest since the derivation of the Standard Model. Therefore
this thesis mostly collects and recreates calculations and arguments from sources.

The following paragraphs will give a very short introduction on what the basics of a quan-
tum �eld theory concerning the running couplings are. For a thorough introduction please refer
to [Wei13] or any book on the topic.

The Standard Model of Particle Physics is a Quantum Field Theory, describing the interactions
of Fields using the Lagrangian of the theory and the appropriate Feynman rules, which trans-
late Feynman diagrams into mathematical expressions. Since, in calculations of a �eld theory,
in�nities are possible to arise, every theory has to undergo a process called renormalization,
removing those in�nities by absorbing them into the parameters of the Lagrangian, thereby
loosing predictability of a number of physical observables. If the number of observables lost is
�nite, the theory is called renormalizable. A renormalizable theory has to be supplied with the
values of the lost predictions and is then able to predict all other interactions in the model.
The setting of those parameters is called setting the renormalization conditions. They specify
the values of certain Feynman diagrams at some energy scale to the experimentally measured
values.
By absorbing the in�nities into the unphysical parameters of the Lagrangian and therefore ren-
dering the physical observables �nite, the parameters of the Lagrangian become divergent. It
is possible to split the divergent parameters of the Lagrangian into the physical observable pa-
rameters and the divergent corrections thereof, called the counter-terms. These counter terms
ensure that the Feynman diagrams are set to the physical observables, therefore they have to
cancel the divergence of the appropriate Feynman diagrams at the energy scale of the renor-
malization conditions.
There are mainly two di�erent methods to extract the divergences out of the Feynman diagrams
and thereby calculate the counter terms. In cuto�-regularisation, the momentum integrals up
to arbitrarily high momenta are cut o� at the cuto� Λ and after the calculation, the limit
Λ → ∞ is taken. In dimensional regularisation, the momentum integrals are done in d space-
time dimensions and at the end, the limit d→ 4 is taken. Both methods enable to extract the
divergences into divergences of either Λ or d.
Since the counterterms only exactly cancel the divergences of the diagrams at the renormaliza-
tion scale M of the theory, at other energy scales M ′ the parameters receive �nite corrections.
This enables to specify a equally well description at this di�erent energy scale M ′, using new
parameters. This comes down to the fact that coupling constants and masses and all other
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parameters of the theory are e�ectively scale dependant. This is done by introducing the e�ec-
tive couplings and other e�ective parameters which specify the value of the physical observable
at an arbitrary energy scale. The behaviour of the e�ective parameters is speci�ed in the
Callan-Symanzik Equation, which has to hold for every Green's function in the theory.M ∂

∂M
+

∑
couplings{gi}

β(gi)
∂

∂gi
+
∑

�elds{i}

niγi(g)

G(n)({xi};M, {gi}) = 0 (1)

This equation governs the behaviour of the e�ective couplings by solving it for the β-functions.
The e�ective coupling are usually also referred to as the running couplings, as they run with
the energy scale p of the theory according to:

∂

∂ ln(p/M)
gi = β(gi) (2)

with: gi(p = M) =gi (taken from experiment at the renormalization scale M) (3)

The running couplings describe the e�ective strength of the coupling at any energy scale and
their behaviour is described by their β-functions.

This thesis will derive the running couplings on one loop level and calculate the running cou-
plings on one and two loop level for the Standard Model of Particle Physics. This will be
done for the three gauge couplings, the Top Yukawa coupling and the Higgs quartic coupling
to explore the phenomena of coupling uni�cation and the stability of the electroweak vacuum.
These phenomena are explored to form a discussion of hints towards beyond the Standard Model
Physics in the predictions of the Standard Model. Supersymmetry and Grand Uni�cation are
considered and discussed as potential theories, both postulating new particles. Therefore the ef-
fect of postulating an additional pair of fermions charged under SU(3) on the running couplings
is explored in the last section.

2 Renormalization Conditions and Electroweak Symmetry

Breaking

A key ingredient in specifying a theory is to choose a scale M at which to specify the, until
then, arbitrary physical parameters of our theory. They are set to experimentally measured
values because the prediction of those parameters was lost in the process of renormalization.
The relations de�ning these parameters are therefore called "renormalization conditions". In
a general gauge theory, this is usually done by setting the gauge-boson-fermion-vertex, other
vertices, the gauge boson propagator and the fermion propagator to the experimental transition
amplitudes, measured at some speci�ed energy scale, preferably the same for all renormaliza-
tion conditions.
Those experimental inputs are vital for the further discussion of the theory because they serve
as the initial conditions for the numerical solving of the di�erential equations for the running
couplings.
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One problem remains in specifying the renormalization condition for the gauge theories, such
as the Standard Model of Particle Physics or the minimal supersymmetric extension thereof.
Those theories to be examined in this thesis use the concept of symmetry breaking on their
electroweak sector of SU(2)L × U(1)Y to U(1)e.m.. Only the symmetry broken U(1)e.m. can be
measured experimentally. Therefore it is necessary to understand this concept in order to relate
the measured values to the coupling constants of the non-broken theory, which are going to be
discussed here. Therefore a short introduction to this process called "The Higgs Mechanism"
and derivation of the appropriate equations is necessary.
This will closely follow [Daw98, Chapter 2.1 and 2.2].

2.1 Simple Case of Symmetry Breaking: The Abelian Higgs Model

For the �rst example of symmetry breaking, a U(1) massless gauge theory together with a
single complex scalar �eld coupled to it is considered. The gauge �eld has to be massless in
order to uphold the U(1) symmetry. The Lagrangian is:

L = −1

4
FµνF

µν + |Dµφ|2 − V (φ) (4)

where: Dµ = ∂µ − ieAµ is the covariant derivative and V (φ) = µ2 |φ|2 + λ
(
|φ|2
)2
, the most

general renormalizable potential allowed by the U(1) gauge. In order for a bound state of
minimum energy (i.e. a vacuum) to exist, λ has to be positive. Therefore two possible cases
remain:
First case: µ2 ≥ 0 Here the state of lowest energy, i.e. the vacuum is the state of φ = 0, the
symmetry of the Lagrangian is preserved and no new processes occur.
Second case: µ2 < 0 Here the potential has the famous "Mexican hat" shape. Therefore the
vacuum is not at φ = 0. The vacuum expectation value of the scalar �eld is:

〈φ〉 =

√
−µ

2

2λ
≡ v√

2
(5)

The direction in the complex plane in which the vacuum is chosen is arbitrary, any direction
is possible. The convention is to choose it such that φ is real. To simplify the following steps,
the �eld φ is usually decomposed into the vacuum expectation value and two real �elds as the
di�erence from the vacuum. χ and h are real scalar �elds with zero vacuum expectation value.

φ ≡ 1√
2
ei
χ
v (v + h) (6)

Inserting this into the Lagrangian of the theory and making a gauge transformation of Aµ to
unitary gauge in order to remove the Goldstone Boson χ yields:

L =
−1

4
FµνF

µν +
e2v2

2
AµA

µ +
1

2

(
∂µh∂

µh+ 2µ2h2
)

(7)

This Lagrangian describes a massive gauge boson of Mass proportional to e · v, a scalar �eld h
with mass-squared −2µ2 > 0.
Without going into detail about the choice of gauge and the Goldstone boson, this mechanism
breaks the symmetry of the theory using a non-zero vacuum expectation value of a complex
scalar �eld in order to give mass to the gauge boson (and to any fermions, which were not
present here). This method of giving �elds a mass is called the Higgs Mechanism.
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2.2 Electroweak Symmetry Breaking: The Weinberg-Salam Model

The Weinberg-Salam Model of electroweak symmetry breaking uses the principle demonstrated
in the sub-chapter above in application to the SU(2)L×U(1)Y gauge theory part of the Standard
Model of Particle Physics.
The three W i

µ, i = 1, 2, 3 gauge bosons of the SU(2)-symmetry and the one U(1) gauge boson
Bµ are symmetry broken into the known W± and Z for the weak interaction and the photon
(γ) for the electromagnetic force by a complex scalar SU(2) doublet Φ. The potential of Φ is
given in its most general SU(2) invariant form as:

V (Φ) = µ2
∣∣Φ†Φ∣∣+ λ

(∣∣Φ†Φ∣∣)2 (λ > 0) (8)

With a non-vanishing vacuum expectation value v of the �eld Φ for µ2 < 0. The (symmetry-
broken) electromagnetic charge of the scalar �eld is zero, therefore the desired symmetry break-
ing SU(2)L × U(1)Y → U(1)e.m. is achieved.
The physical gauge �elds are then, after symmetry breaking with the masses obtained by the
Higgs mechanism:

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
M2

W =
1

4
g22v

2 (9)

Zµ =
−g1Bµ + g2W

3
µ√

g21 + g22
M2

Z =
1

4
(g21 + g22)v2 (10)

Aµ =
g2Bµ + g1W

3
µ√

g21 + g22
M2

A = 0 (11)

By de�nition, the massless photon must couple with the electromagnetic coupling constant e,
the weak mixing angle θW is de�ned via:

e = g2 sin θW (12)

e = g1 cos θW (13)

cos(θW ) =
MW

MZ

(14)

Now it is possible to relate the observable electromagnetic coupling e to the non-symmetry
broken coupling constants g1 and g2.
Two more important parameters of the theory are the Higgs quartic coupling λ, which is closely
related to the Higgs mass Mh and the top Yukawa coupling ht, depending on the top mass mt.

λ =
M2

h

2v2
(15)

ht =
mt

√
2

v
(16)

The value for v can be very accurately measured in the Muon decay and yields the result
v = 246GeV (taken from [Daw98, Eq. 41]).
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2.3 Experimental Values for the Renormalization Conditions

The experimental values for the renormalization conditions are taken from [IV13, Eq 3.1-3.4].
They are, measured at a scale of MZ , the mass of the Z-boson:

MZ = 91.1876GeV, MW = 80.385GeV, mt = 173.1GeV (17)

sin2(θW )(MZ) = 0.23126, α−1e.m.(MZ) = 127.937, α3(MZ) = 0.1184 (18)

Using αi =
g2i
4π
, it is now possible to calculate the values of the three coupling constants at the

scale of MZ as:

g1 =
1

cos θw

√
4π

α−1e.m.
= 0.3555 α−11 = 99.43 (19)

g2 =
1

sin θw

√
4π

α−1e.m.
= 0.6517 α−12 = 29.58 (20)

g3 =
√

4πα3 = 1.220 α−13 = 8.446 (21)

The top Yukawa coupling yt and the Higgs quartic coupling λ is are necessary for the Renor-
malization Group Equations on two loop level.
They ware calculated using the above relations to the Higgs and top mass, whose values are
taken from [Aad12] for the Higgs mass Mh = 126.0GeV and [JBeaPDG12] for the top mass
mt = 173.5± 1.4GeV (combined statistical and systematic error).

Note: the di�erent normalisation factor of 3
5
for the U(1) part (as explained in section 4.2)

is not included here and SARAH uses a di�erent normalisation for λ by a factors of:

λSARAH = λ · 2 (22)

These factors are have to be added to the results of the above calculations. Without the
di�erent SARAH normalisation's, one gets:

ht(MZ) = 0.9974 (23)

λ(MZ) = 0.1312 (24)

3 One-Loop Renormalization of Couplings

As a �rst step in the evaluation of the running couplings, a �rst explicit calculation of the beta
functions of the three interactions that are in the Standard Model will be made, along the lines
of [PS07].
The following calculations are done before electroweak symmetry breaking in applied, therefore
all particles are massless and the SU(2)× U(1)-symmetry is not broken.
When considering a general, renormalizable Quantum Field Theory of fermions with dimen-
sionless coupling constants, the Green's functions take the general form of (fully connected, up
to one loop level) in cuto�-regularisation with cuto� Λ:
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G(n) = (tree-level) + (1PI) + (vertex counterterm) + (external leg corrections) (25)

=

(∏
i

i

p2i

)[
−ig − iB log

Λ2

−p2
− iδg + (−ig)

∑
i

(
Ai log

Λ2

−p2
− δZi

)]
(26)

Where the pi are the external momenta, p2 is some invariant made out of these, δg is the vertex
counterterm and δZi is the propagator counterterm.
This can be inserted into the Callan-Symanzik (1) equation and be solved for the β-function.
For this the following result from applying the Callan-Symantzik Equation to the two point
function is needed:

γi =
1

2
M

∂

∂M
δZi (to �rst order, for every �eld involved) (27)

Since, at least to one loop order, the β-function is independent of the exact renormalization
scheme, all invariants inside logarithms (like the p2 above) can be set equal to the renormaliza-
tion scale M2 (for a thorough explanation see [PS07, Ch.12.2]). In the counterterm formalism
all dependencies on the renormalization scale are kept inside the counterterms, therefore the
Callan-Symanzik equation can be solved to:

β(g) = M
∂

∂M
(−δg +

1

2
g
∑
i

δZi) (28)

where δg is the vertex counterterm and the δZi are the propagator counterterms of the involved
�elds.
Now consider the three point function 〈Ω|ΨΨAµ |Ω〉 with correction terms:

� +� +� +� +�
= (tree level) + (∼ δ2) + (∼ δ2) + (∼ δ3) + (∼ (δg = gδ1)) (29)

Therefore, using (28) gives the result for the one loop β-function of a general, massless, renor-
malizable gauge theory as:

β(g) = gM
∂

∂M
(−δ1 + δ2 +

1

2
δ3) (30)

With the computation of the counter terms as speci�ed in chapter 1 this can now be evaluated
for speci�c theories.
The fact that the β-function is independent of the cuto� of the theory follows directly from the
renomalizability of the �eld theory.
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3.1 Contribution of a Scalar on One Loop Level

For the following discussion on the theories behind current particle physics, the Standard Model
of Particle Physics and the following discussion going beyond, one key component is the ap-
pearance of a complex scalar �eld that induces spontaneous symmetry breaking. This �eld is
called the Higgs �eld in the Standard Model, but its true nature is not of signi�cance here, at
least for this �rst discussion.
Due to the fact that the symmetry breaking itself does not change the renormalizability of a
theory, the contribution to the β functions can be worked out separately from the other renor-
malization calculations (those of the fermionic �elds and the gauge couplings and �elds in the
following chapters).
The Lagrangian of the Theory is modi�ed to include a scalar �eld, which is coupled to the
gauge �elds via the covariant derivative term.

L → L+ (Dµφ)a(Dµφ)a + (Yukawa couplings, omitted to one loop order) (31)

3.1.1 Scalar Field in the Non-Abelian Case

The contribution can be calculated by extracting the divergence of the gauge boson self energy
due to the scalar �eld, as in [Sre07, Eq. 78.31](using the normalisation of the regularisation of
[PS07] for consistency):

�
= Πcs(k

2) =
−g21

(4π)(d−2)
2

3
T (Rcs)

Γ(2− d/2)

(k2)2−d/2
+ �nite (32)

where T (Rcs) is de�ned by Tr(TaTb) = T (R)δab taking into account the scalar gauge group
matrices of their coupling to the gauge �eld.
To account for this divergence, the term δ3 has to contain a term of the following type:

δ3 = −Πcs(M
2) + (other contributions) + (�nite) (33)

3.1.2 Scalar Field in the Abelian Case

The diagram contributing to the δ3 counter term in the Abelian case is just the same as before
for the Non-Abelian case. In a theory of Dirac-fermions and complex scalars, the contributions
to the counterterm just add, therefore the photon self energy contains a term of the form (as
in [Sre07, Eq. 65.8]):

� ∝ −
g21 ·Q2

i,SC

(4π)(d/2)
1

2
Γ(2− d/2) (34)
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One of these Terms is taking part for every scalar �eld with charge Qi,sc involved. To cancel
this divergence, the counter term must contain the scalar contribution, now for multiple scalar
�elds:

δ3 = −
g21 ·

∑
iQ

2
i,sc

(4π)2
1

3

Γ(2− d/2)

(M2)2−d/2
+ (other contributions) + (�nite) (35)

3.2 One-Loop β-Function in U(1)

When applying the formula for the one-loop-β function to the simplest case of interest in the
Standard Model of Particle Physics, the U(1)-Symmetry gauge theory, some simpli�cations can
be made to (30).
In this theory in Feynman gauge, the counter terms δ1 and δ2 always exactly cancel each other,
order by order in perturbation theory, due to the Ward Identity of the U(1)-symmetry. There-
fore one only has to evaluate δ3 in this case. To one loop level, this term has to cancel the
divergence of the following diagram.

� with the counter term being:	 = −i(gµνq2 − qµqν)δ3

This diagram exists for every fermion �eld in the theory with charge Qi · e. Since no other
di�erences of the fermionic �elds play any role in this diagram, it is su�cient to evaluate it for
one and then add up the charges for all U(1)-charged fermionic �elds of the theory.
The loop evaluates to the following in dimensional regularisation:

Π2(q
2) = − g21 ·Q2

i

(4π)(d/2)

∫ 1

0

dx
Γ(2− d/2)

(m2 − x(1− xq2))2−d/2
(8x(1− x)) (36)

To cancel this divergence at the renormalization scale −M2, the counterterm must be:

δ3 = Π(−M2) = −g
2
1 ·Q2

i

(4π)2
4

3

Γ(2− d/2)

(M2)2−d/2
+ (�nite) + (scalar contribution) (37)

Summing up and adding the scalar contribution calculated in (35) and inserting into (30) leads
to (as in [Sre07, Eq. 66.29]):

β(g1) =
g31

12π2

(∑
i

Q2
i +

1

4

∑
j

Q2
sc,j

)
(38)

3.3 One-Loop β-Function in SU(2) and SU(3)

In the two non-abelian gauge symmetries contained in the Standard Model of Particle Physics,
the calculation is not as simple. For the calculation of the three counterterms in those theories,
several diagrams have to be considered, as the δ1 and δ2 counterterms do not cancel here.
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3.3.1 Gauge Boson Self-Energy

Four diagrams contribute to the gauge boson self energy counterterm δ3 on one-loop level.


 +� +� +
 +(scalar contribution)

The �rst diagram takes into account all fermionic �elds of the theory which are charged under
the symmetry of the gauge boson whilst the last three are all pure gauge. The same principle
of summing over all fermionic �elds as for the U(1) applies here. The fermionic diagram looks
just the same as before, but a term of tr[ta, tb] = C(r)δab has to be added to account for the
fermion gauge group matrices in the representation r. Restricting the theory to nf fermionic
�elds in the same representation r yields:

� = i(q2gµν − qµqν)δab
(
−g2

(4π)2
4

3
nfC(r)Γ(2− d/2) + . . .

)
(39)

The three pure gauge diagrams add up to the following terms, using the quadratic Casmimir
operator C2(G) of the gauge �eld representation G (adjoint to r). For an exact derivation
please follow [PS07, Ch 16.5 Eq 16.71]. The quadratic Casimir operator can be de�ned by
tart

a
r = C2(G)δab. Therefore the sum of the three pure gauge diagrams takes the value of:

ig2

(4π)d/2
C2(G)δab

∫ 1

0

dx
Γ(2− d

2
)

42−d/2 (gµνq2 − qµqν)[(1− d/2)(1− 2x)2 + 2] (40)

= i(q2gµν − qµqν)δab
(
−g2

(4π)2
−5

3
C2(G)Γ(2− d/2) + . . .

)
(41)

The counterterm δ3 has to cancel both divergences at the renormalization scale −M2, therefore
he has to take the form, to lowest order:

δ3 =
g2

(4π)2
Γ(2− d/2)

(M2)2−d/2

[
5

3
C2(G)− 4

3
nfC(r)

]
+ �nite + scalar contribution (42)

3.3.2 Fermionic Interaction Counterterms

The other two counterterms are de�ned in the theory to provide the subtraction of the diver-
gence of the following diagrams.

� +� +�
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In Feynman-t'Hooft gauge, the fermion propagator one loop diagram can be evaluated as:∫
dp4

(2π)4
(ig)2γµta

i(/p+ /k)

(p+ k)2
γµt

a−i
p2

(43)

=
ig2

(4π)2
/kC2(r)Γ(2− d/2) + . . . (44)

Therefore the fermion propagator counterterm can be calculated as:

δ2 =
−g2

(4π)2
Γ(2− d/2)

(M2)2−d/2
· C2(r) + �nite (45)

The two vertex counterterms both only have a logarithmic super�cial degree of freedom, there-
fore they can be calculated easier in the limit where the loop impulse is much larger than the
external momenta. This yields as in [PS07, Ch 16.5 Eq 16.83 and 16.81]:

� ∼ ig3

(4π)2
[C2(r)− 1

2
C2(G)]taγµ(Γ(2− d/2) + . . .) (46)

� ∼ ig3

(4π)2
3
2
C2(G)taγµ(Γ(2− d/2) + . . .) (47)

Renormalizing the divergences at the scale M2 yields the counterterm:

δ1 =
−g2

(4π)2
Γ(2− d/2)

(M2)2−d/2
[C2(r)− C2(G)] + �nite (48)

3.3.3 Combining all Counterterms

After the separate calculation of all counterterms fur the SU(N)-gauge symmetry, they can be
combined via (30) to get the one loop β function, using the scalar contribution calculated in
(33).

β(g) =
−g3

(4π)2

[
11

3
C2(G)− 4

3
nfC(r)− nscT (Rsc)

]
(49)

Including nsc scalar �elds in the (assuming all the same) representation Rsc, each contributing
according to (33).
For nf Dirac-fermions in the fundamental representation r and C2(G) the quadratic Casimir
operator of the adjoint representation of the group and in an SU(N) gauge theory, the formula
can be simpli�ed to:

β(g) = − g3

(4π)2
[
11

3
N − 2

3
nf −

1

3
nscT (Rsc)] (50)

In agreement with [Sre07, Eq. 78.36].
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4 The Standard Model of Particle Physics

The Standard Model of Particle Physics is the current theoretical description of the physics
of subatomic particles which interact via the electromagnetic, weak and strong nuclear forces.
It is quite successful in correctly predicting experimental results, but some phenomena like
neutrino-oscillations, dark matter and dark energy are not explained by it.
The Standard Model is a �eld theory of SU(3)×SU(2)×U(1), using three families of fermionic
�elds and one scalar �eld, the Higgs �eld, which is not charged under SU(3) but is an SU(2)
doublet. So far no �aws have been discovered in the Standard Model up to the Planck scale
of Mpl ≈ 1019GeV , at which point one has to take gravity into account, which is currently not
possible.
The cuto� for the Standard Model, being the Planck scale, determines that the model may
only be applied to energy scales below it. This corresponds to:

ln

(
Mpl

MZ

)
≈ 40 or log

(
Mpl

GeV

)
≈ 19 (51)

Therefore, all runnings of couplings are not done much further than this scale.

4.1 Particle Content of the Standard Model

The missing values for nf and
∑

iQ
2
i can be extracted from the particle content of the Standard

Model as it is stated in the table 1 below (taken from [Wei13]). The usual notation of (x, y)z
is used where x is the representation under SU(3), y is the representation under SU(2) and z
is the charge under U(1).

Table 1: Particle Content of the SM

particle type and chirality contribution to the interactions
Right handed up-type Quarks (3, 1)2/3
Right handed down-type Quarks (3, 1)−1/3
Left-handed Quarks (3, 2)1/6
Right-handed Leptons (1, 1)−1
Left-handed Leptons (1, 2)−1/2
Right-handed Neutrinos (1, 1)0
Higgs (complex scalar) (1, 2)1/2

Therefore for the U(1)-Symmetry one gets:∑
i

Q2
i = 3 ·

(
3 · (2

3
)2 + 3 · (−1

3
)2 + 6 · (1

6
)2 + (−1)2 + 2 · (−1

2
)2
)

= 10 (52)

For the derivation of the β functions for the three symmetries, Dirac fermions were considered,
with nf being the number of such �elds. The Standard Model of Particle Physics, as a chiral
theory, contains Weyl - fermions. A Weyl-fermion contributes only as half a Dirac-fermion to
the counterterm, therefore each fermionic �eld in the Standard Model only contributes half to
nf = 1

2
· nf,Weyl and

∑
iQi = 1

2

∑
iQi,Weyl.

11



Therefore the remaining parameters in the β functions take values using three families for every
particle type and including the scalar contribution of one complex scalar �eld as calculated
above:

SU(3) N = 3 nf =
1

2
· (6 + 6) = 6 no Higgs contribution (53)

SU(2) N = 2 nf =
1

2
· (3 + 9) = 6 nsc · T (Rcs) =

1

2
(54)

U(1)
∑
i

Q2
i =

1

2
· 10

∑
i

Q2
i,sc = 2 · 1

4
(55)

Therefore the one-loop-β-functions for the Standard Model for the three fundamental forces
take the values using the formulas derived above (as in [Mar97, Eq. 6.4.7]):

SU(3) : β(g3) =
−7

16π2
· g33 (56)

SU(2) : β(g2) =
−19

96π2
· g32 (57)

U(1) : β(g1) =
41

96π2
· g31 (58)

Please note the di�erence of these results from the ones in the source due to the di�erent
normalisation of the charges. This will be discussed thoroughly in the next chapter.

4.2 Embedding of SU(3)× SU(2)× U(1) into SU(5)

In the Standard Model of Particle Physics, there is a certain ambiguity in the normalisation
of the weak hypercharge kinetic energy, and equivalently in the normalisation of the charge
associated with it because a shift in �eld strength AµY can be simply reversed for all physical
results by inversely shifting the coupling eY , such that eY · AµY is constant.
One approach to �x this is to consider the minimal uni�cation of SU(3) × SU(2) × U(1) into
SU(5). This ensures a compatible normalisation of all three gauge couplings needed in order
to be able to compare them.
To do this, the generators of SU(5) are written in terms of the generators of the contained sym-
metries (Pauli matrices σi for SU(2), the Dirac or Gamma- Matrices γj for SU(3) and simple
complex numbers for U(1)).
To achieve the embedding, the generators are combined in the following way, ensuring commu-
tativity and tracelessness of the generators.
For the SU(3) and SU(2) sector it is straight forward to de�ne the 5× 5 matrices:

γi 0
0

 and


0
0

0
σi

 (59)

12



To do the same with the U(1) sector, one �nds that the following matrices commute with the
above and create the required symmetry.

α
α

α
β

β

 (60)

where α is the charge of a particle in the SU(3) fundamental representation, and β for SU(2).
For the Standard Model one gets:

α = −1

3
and β =

1

2
(61)

The normalisation of the U(1) sector is chosen to be such that the trace relation holds:

tr(T aT b) = C(T ) · δab (62)

with C(T ) = 1
2
for the Weyl-fermions of the Standard Model. Therefore the U(1) Matrix is

re-scaled by a factor of
√

3
5
to get:

√
3

5
·


−1
3

−1
3

−1
3

1
2

1
2

 ful�lling tr(T aT b) =
1

2
δab (63)

These generators all commute and are all traceless. Using this decomposition, it is possible to
write the values of the before three separated coupling constants (g3 g2 and g1) now in terms of
the new SU(5) coupling constant g5 (taken from [PS07, Eq. 22.6]) at the point of uni�cation
at the scale of SU(5) breaking.

g5 = g3 = g2 =

√
5

3
· g1 (64)

To account for this factor of
√

5
3
, it is convenient to re-scale the weak hypercharge.

g1 → g1 ·
√

3

5
(65)

This then gives another factor of 3
5
for the β-function of the weak hypercharge, which then is:

β(g1) =
41

160π2
· g31 (66)

This now uses the same normalisation of the charges as [Mar97], [BDG+13] and SARAH (see
chapter 7.1).
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4.3 One Loop β Functions in the Standard Model

In order to solve the behaviour of the running couplings in the Standard Model of Particle
Physics, it is convenient and numerically necessary calculate in terms of α−1i with αi = g2i /4π
and not in gi itself. Here the di�erential equations are much simpler:

U(1) :
∂

∂ ln(p/M)
α−11 = − 41

20π
(67)

SU(2) :
∂

∂ ln(p/M)
α−12 =

19

12π
(68)

SU(3) :
∂

∂ ln(p/M)
α−13 =

7

2π
(69)

The solutions to this are, using the starting values from 2.3 at M = MZ , now including the
normalisation factor for αY = α1:

α−11 (p) = α−11 (M)− 41

20π
· ln(p/M) α−11 (M) ≈ 3

5
· 99.43 = 59.66 (70)

α−12 (p) = α−12 (M) +
19

12π
· ln(p/M) α−12 (M) ≈ 29.58 (71)

α−13 (p) = α−13 (M) +
7

2π
· ln(p/M) α−13 (M) ≈ 8.446 (72)

The results are plotted and discussed later together with the one loop results for the MSSM of
the next chapter.

5 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is an extension on the experimentally
veri�ed Standard Model of Particle Physics to try and give explanations on multiple topics,
including a possible solution to the hierarchy problem.
In this Model, the particle content of the Standard Model is replaced by Super�elds. Several
types of Super�elds are known, the ones used here are Super�elds of one Dirac fermion (or two
Weyl fermions) and one complex scalar �eld (or two real scalar �elds) for the matter sector of
the Standard Model and vector multiplets, one gauge boson and two Weyl fermions, for the
gauge sector.
Each fermion as in table 1 is assigned a supersymmetric, bosonic partner and the other way
round in order to be able to write everything in terms of Super�elds.
The Higgs-�eld has to be manipulated a little more to give a reasonable theory because a single
scalar �eld with a chiral Weyl-fermion would not be able to describe the electroweak symmetry
braking process of giving particles their mass for all fermions in the MSSM. Therefore two Higgs
supermultiplets, Hu and Hd are introduced to the theory, each consisting of one complex scalar
�eld and one Dirac-fermion.
The same normalisation of the U(1)-part as in 4.2 is used here.
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5.1 Particle Content of the MSSM

A summary of the particle content of the MSSM can be found in the table below, which is
taken from [Mar97, Table 1.1 and 1.2]. The same form of denoting charges and representations
under the fundamental forces is used as in the Standard Model. The supersymmetry partners
added to the Standard Model are marked with a tilde.

Table 2: Particle Content of the MSSM

Names spin 0 spin1/2 Representation and Charge

squarks, quarks (ũL d̃L) (uL dL) (3, 2)1/6
(three families) ũ∗R u†R (3, 1)−2/3

d̃∗R d†R (3, 1)1/3
sleptons, leptons (ν̃ ẽL) (ν eL) (1, 2)−1/2
(three families) ẽ∗R e†R (1, 1)1
Higgs, higgsinos (H+

u H0
u) (H̃+

u H̃0
u) (1, 2)1/2

(H0
d H−d ) (H̃0

d H̃−d ) (1, 2)−1/2
spin1/2 spin1

gluino, gluon g̃ g (8, 1)0
winos, W bosons W̃± W̃ 0 W± W 0 (1, 3)0
bino, B boson B̃0 B0 (1, 1)0

5.2 One-Loop β-Functions in the MSSM

With this setup of the theory, one now can calculate the one-loop-β-functions for this theory in
complete analogy to the derivation done in the standard model. The equations (50) and (38)
yield using the same derivation as in the Standard Model with more �elds:

SU(3) N = 3 nf =
1

2
· (6 + 6 + 3) = 7.5 nsc · T (Rcs) =

12

6
(73)

SU(2) N = 2 nf =
1

2
· (3 + 9 + 4 + 2) = 9 nsc · T (Rcs) =

(12 + 2)

2
(74)

U(1)
1

2

∑
i

Q2
i +

1

4

∑
i

Q2
i,sc =

33

5
(75)

Using these values, the β-functions can be calculated as, as stated in [Mar97, Eq. 6.4.7]:

SU(3) : β(g3) =
1

16π2
· (−3) · g33 (76)

SU(2) : β(g2) =
1

16π2
· 1 · g32 (77)

U(1) : β(g1) =
1

16π2
· 33

5
· g31 (78)
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Now using the same simpli�cation of changing variables to α−1, and solving the di�erential
equation just as in the Standard Model, the result can be written as, using the same starting
values as before at M = MZ :

α−11 (p) = α−11 (M)− 33

10π
· ln(p/M) α−11 (M) ≈ 3

5
· 99.43 = 59.66 (79)

α−12 (p) = α−12 (M)− 1

2π
· ln(p/M) α−12 (M) ≈ 29.58 (80)

α−13 (p) = α−13 (M) +
3

2π
· ln(p/M) α−13 (M) ≈ 8.446 (81)

6 One Loop Running Couplings in SM and MSSM

The following graph 1 shows the results of the one loop β-functions calculations to get the run-
ning couplings for the Standard Model of Particle Physics and the Minimal Supersymmetric
Standard Model.

Figure 1: One Loop Running Couplings in the SM and MSSM

The running of the couplings in the Standard Model and the minimal supersymmetric
extension thereof show a quite intriguing feature, they run up to a region in which all three
fundamental forces have coupling constants of about roughly the same size. For the �rst
approximation of the one loop β-functions for the Standard Model the region in which the
couplings are close by each other is quite large, but in the MSSM the couplings unify at almost
a single point.
This feature of the running couplings is usually referred to as the "uni�cation of the couplings".
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For this uni�cation to happen, a suitable normalisation, as explained in 4.2, has to be done.
This is vital because otherwise the couplings are measured in independent scales, which takes
the physical meaning out of all potential uni�cations.
Before discussing potential physical implications of the observed uni�cation of the running
couplings an more precise calculation on two loop level will follow. This is done to check
whether this feature really is physical or is just a coincidence on this �rst approximation. In
this discussion an measure of how good the uni�cation is will be mentioned and applied to the
one loop result too.
The discussion is done in chapter 8.4 .

7 Numerical Methods and SARAH

The two-loop β functions that are discussed in the following chapters are a more complicated
set of �ve �rst order non-homogeneous di�erential equations for the SM and four for the MSSM.
Their analytical solutions are unknown, therefore they are solved numerically. For this, two
di�erent methods are used which are checked against each other.

7.1 SARAH

The �rst method used in the solving of the two loop β-functions is the program Mathematica
(for reference see [Res14]). This program would be able to solve sets of di�erential equations
by itself, but a far more powerful tool is available as a package for Mathematica.
The package is called SARAH, a tool to build and analyse supersymmetric and non-supersymmetric
models as quantum �eld theories. The package is developed by Florian Staub and is available
online. The resources and functions that were used in SARAH can be found in [Sta14] and the
introductory manual is [Sta08]. The methods of deriving the renormalization group equations
is explained in [Sta11].
SARAH uses the normalisation conventions of [LX03]. These match with [BDG+13] up to a
factor of 2 for λ.
Using SARAH, the β-functions for the SM and MSSM can be derived, using the prede�ned
models available in the package. These are then solved in Mathematica, where SARAH al-
ready writes a solving-function to achieve that. The only input necessary are the values of the
couplings that are to be run at a certain energy scale. SARAH then provides interpolating
functions of the numerical solutions for the running couplings. These can then be plotted using
stock Mathematica routines.
The results that are calculated in SARAH can be exported to a LaTeX-�le. The results of
the parts required for this thesis, the β-functions for the SM and MSSM, can be found in the
Appendix B and C.
The model �les that are the basis of the SARAH calculations are text�les specifying the particle
content and gauge �elds of the theory, together with various other things like Yukawa-coupling
to scalar �elds, potentials and super-potentials. During this thesis, the prede�ned models were
used and in chapter 10.1 the model �le of the Standard Model was altered only in the de�nition
of the matter sector consisting of fermions and by adding a mass term to the potential of the
Lagrangian.
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7.2 Numerical Methods

In order to not completely rely on the calculations done in Mathematica using SARAH, the
two loop β-functions are taken from [BDG+13] and are run in a C program which can be found
in Appendix A. This code was written for this thesis, but relies on the Runge Kutta 4 method
from the Numerical Recipes code collection, which is a fourth order explicit one-step solver for
general sets of �rst order di�erential equations.
Numerical Recipes is an open source collection of a lot of useful functions written in a lot of
di�erent coding languages. It is available online ([Co.14]) or as a book ([Vet99]).
The program solves the supplied di�erential equations using the starting conditions which are
written directly into the code and outputs the calculated datapoints into a text�le. This �le
can then be plotted using any plotting program, here gnuplot (for reference see [TW14]) was
used to plot and interpolate the data points.
The Runge Kutta 4 solver was tested with various polynomial-di�erential equations similar to
the β-functions to which analytical solutions are known and no signi�cant error in the numerical
solutions was found.
This and the fact that the Runge Kutta 4 results match with the SARAH results, it is possible
to neglect numerical errors for the discussions in this thesis as the solutions are su�ciently
accurate. The code for this solver was used in many di�erent ways throughout this thesis,
mainly in varying the starting conditions and the starting and stopping scale of the solver, but
the basic routine stayed the same.

8 Two Loop Running Couplings in SM and MSSM

8.1 Two Loop β-Functions in SM and MSSM

The derivation of the two loop β functions and the two loop running couplings follows the
same procedure outlined previously in this thesis for the one loop case. All possible divergent
diagrams have to be evaluated and the counterterms computed, which are then plugged into the
Callan-Symanzik equation to derive the β functions. In this, a lot more diagrams contribute,
especially interesting are the ones of the form:

� and�
or other mixings of the di�erent couplings, now including Yukawa couplings.
This leads to β-functions not only depending on one running coupling but on all couplings in
the system at once. Therefore it is no longer possible to treat them independently, as it was
done on one loop level. For the three fundamental forces, the top-Yukawa coupling ht and the
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Scalar quartic coupling λ this is:

βi({gj}) =β1 loop({gi}) + β2 loop({gi}) with i, j ∈ {1, 2, 3, 4, 5} (82)

where g4 ≡ yt and g5 ≡ λ

Up to two loop level, two more couplings have to be considered because they are no longer
negligible, compared to the other contributions. The Yukawa coupling of the top quark to the
Higgs �eld yt (to leading order) and the Higgs quartic coupling λ have to be taken into account.
The Higgs quartic coupling is only a free parameter in the Standard Model, the appearance of
λ in the MSSM will be brie�y explained in section 9.3.
The calculations for this run just as it was done for the one loop level, but a lot more diagrams
contribute. Therefore the calculation is not done explicitly here and the results are taken from
[BDG+13, Appendix B](neglecting yd and yτ , i.e. setting them to zero and using the result
only up to two loop). The normalisation of this paper for the U(1) case is in agreement with
the previously used normalisation of the weak hypercharge embedded into SU(5).

∂g1
∂ ln(p/M)

=
1

(4π)2
41

6
· 3

5
g31 +

g31
(4π)4

3

5

(
199

18
g21

3

5
+

27

6
g22 +

44

3
g33 −

17

6
h2t

)
(83)

∂g2
∂ log(p/M)

= − 1

(4π)2
19

6
g32 +

g32
(4π)4

(
9

6

3

5
g21 +

35

6
g22 + 12g23 −

3

2
h2t

)
(84)

∂g3
∂ ln(p/M)

= − 1

(4π)2
7g33 +

g33
(4π)4

(
11

6

3

5
g21 +

9

2
g22 − 26g23 − 2h2t

)
(85)

∂yt
∂ ln(p/M)

=
yt

(4π)2

[
9y2t
2
− 8g23 −

9g22
4
− 17g21

20

]
+

+
yt

(4π)4

[
y2t

(
−12y2t − 12λ+ 36g23 +

225g22
16

+
393g21

80

)
+

+ 6λ2 − 108g43 −
23g42

4
+

1187g41
600

+ 9g23g
2
2 +

19

15
g23g

2
1 −

9

20
g22g

2
1

]
(86)

∂λ

∂ ln(p/M)
=

2

(4π)2

[
λ

(
12λ+ 6y2t −

9g22
2
− 9g21

10

)
− 3y4t +

9g42
16

+
27g41
400

+
9g22g

2
1

40

]
+

+
2

(4π)4

[
λ2
(
−156λ− 72y2t + 54g22 +

54g21
5

)
+ λy2t

(
−3y2t

2
+ 40g23+ +

45g22
4

+
17g21

4

)
+

+ λ

(
−73g42

16
+

1887g41
400

+
117g22g

2
1

40

)
+ y4t

(
15y2t − 16g23 −

4g21
5

)
+

+ y2t

(
−9g42

8
− 171g41
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+

63g22g
2
1

20

)
+

305g62
32
− 3411g61
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− 289g42g

2
1
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− 1677g22g

4
1
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]
(87)
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The two loop β-functions for the MSSM can be found in [IV13]. Due to cancellations they are
much simpler and shorter.

∂g1
∂ ln(p/M)

=
11g31
(4π)2

3

5
+

g31
(4π)4

3

5

(
199

9

3

5
g21 + 9g22 +

88

3
g23 −

26

3
y2t

)
(88)

∂g2
∂ ln(p/M)

=
g32

(4π)2
+

g32
(4π)4

(
3g21

3

5
+ 25g22 + 24g23 − 6y2t

)
(89)

∂g3
∂ ln(p/M)

= − 3g33
(4π)2

+
g33

(4π)4

(
11

3

3

5
g21 + 9g22 + 14g23 − 4y2t

)
(90)

∂yt
∂ ln(p/M)

=
ht

(4π)2

(
6y2t −

13g21
9

3

5
− 3g22 −

16g23
3

)
(91)

Solving these using the Runge Kutta 4 algorithm as explained in section 7.2 yields the same
approximate coupling uni�cation behaviour as in the 1 loop case, which can be seen below.

Figure 2: Two Loop Running Couplings in SM and MSSM

8.2 Two Loop Running couplings using SARAH

To verify the previously calculated results, the Mathematica package SARAH is used. For an
introduction to SARAH please see section 7.1.

SARAH provides with a numerical solution to the derived Renormalization Group Equations
for every model speci�ed in a model �le. The Standard Model of Particle Physics and the
Minimal Supersymmetric Standard Model are available as prede�ned models, written by the
creator of SARAH: Florian Staub. The solver needs as input the starting values of the three
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gauge couplings, the top-Yukawa coupling and the Higgs quartic coupling and is then able to
produce the following graphs. The β-functions for the three gauge couplings and yt derived by

(a) Two Loop Running Couplings in SM (b) Two Loop Running Couplings in MSSM

Figure 3: calculated by SARAH (g3 (yellow), g2 (purple), g1 (blue))

SARAH match with the ones plugged into the numerical solver, only in the β- functions for λ
do not match completely, but his might be due to the e�ect the exact renormalization scheme
has on the β-functions on two loop level. Even though, the output from SARAH matches the
one of the RK4 routine extremely well.

8.3 Comparison of the Uni�cation Behaviour

The results of the calculation of the running coupling on one and two loop level in the SM and
the MSSM all show the coupling uni�cation behaviour, but to di�erent degrees. Therefore the
measure of uni�cation Puni is usually de�ned as follows:

Puni =

∣∣∣∣g3(Muni)− g2(Muni)

g2(Muni)

∣∣∣∣ (92)

where Muni such that g3(Muni) = g1(Muni) (93)

The results for this on one and two loop level can be found in the table below. For the one
loop results, the coupling constants gi have to be extracted from the calculated α−1i .

Table 3: Measures of Coupling Uni�cation

Puni SM MSSM
One Loop 4.2% 0.42%
Two Loop 3.5% 0.74%

8.4 Implications of the Coupling Uni�cation

The two loop running of the couplings shows the same coupling uni�cation behaviour in SM
and MSSM as it was already seen on one loop level, with the uni�cation in the SM being even
better, in the MSSM again almost perfect. It is therefore safe to conclude that this phenomenon
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was not a coincidence of the one loop calculations, but rather a feature in how our description
of nature in the Standard Model of Particle Physics works.

The coupling uni�cation happening in the Standard Model is a consequence of how the β
functions and the starting values are set to be in our description of nature. If one of the two
were di�erent, the uni�cation behaviour would be di�erent. It is quite likely for two running
couplings to intersect each other, i.e to have an energy scale at which their values are the same.
In the case of three couplings to intersect that close to each other, and becoming even closer
when doing a more exact (two loop) calculation as it is in the Standard Model, this might
actually be hinting at some underlying concept that is not contained in the theory itself.
Many di�erent viewpoints on this matter exist but many of them tend to go into one of the
following directions.

8.4.1 Coupling Uni�cation as a Hint towards Grand Unifying Theories

The gauge coupling uni�cation, with the suitably normalised couplings as being embedded into
SU(5) as explained in chapter 8.4 can be interpreted as a hint that this embedding is not
only done for normalisation purposes but has an actual physical meaning. This concept, as
described in depth in [DRW91], states that the three gauge groups are just di�erent sectors of
one underlying gauge group.
This kind of theory is called a "Grand Unifying Theory" or GUT. Those classes of theories
look for fundamental ingredients which are able to explain all three of the fundamental forces
of particle physics. The minimal GUT is exactly the embedding of SU(3)× SU(2)×U(1) into
SU(5). This is stating that the three gauge boson classes are essentially of the same class and
that this class is spontaneously broken into the three di�erent forces we observe in our particle
accelerators by a process quite similar to the electroweak symmetry breaking. This means that
the three coupling constants are just di�erent symmetry broken parts of the same, underlying
and more fundamental coupling constant of the SU(5) symmetry and without the symmetry
breaking, all three coupling constants should be equal.
This underlying group has to be least SU(5) to be able to account for all twelve known gauge
bosons. This means that there would be at least another twelve currently not observed gauge
bosons. This can be explained by simply considering those additional gauge bosons to be
extremely heavy compared to the known ones. This leads to them not appearing in any exper-
iments available today because of the energy threshold being too low.
The acceptance of a GUT as the replacement for the Standard Model would solve some dif-
�culties in its description by being able to sort gauge bosons and fermions into larger groups
which can be handled more easily. But it is currently not possible to prove or disprove this
because no implications of this GUT have been measured today. New and vastly bigger and
more powerful particle accelerators are needed for that. One of the most discussed implications
of a GUT is that in it, the proton is no longer stable, but the currently measured lifetime of a
proton is greater than 1032 years ([Ryd10]).

8.4.2 Coupling Uni�cation as a Hint towards Supersymmetry

The Standard Model shows the gauge coupling uni�cation nowhere near as close as in the
MSSM, but it is still visible. Some theories consider this to be a sign that particle physics
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should actually be a theory which involves supersymmetry, as this would explain the behaviour
of the couplings because coupling uni�cation can be seen as a consequence of supersymmetry.
This would include the supersymmetry partners of the currently known gauge bosons and the
fermionic matter, which have not been observed yet. To account for this, the same concept of
those unobserved particles being of much higher mass is used, just as in the GUT case. Usually,
as explained in [Ryd10], the masses of supersymmetric partners should be the same. Therefore
to be able to not observe them, the supersymmetry must be broken. The supersymmetry-
breaking-process is quite complicated and involves some problems of its own and creates a lot
of new parameters in the theory.
But nonetheless if supersymmetry is a part of nature, it would ease up on a couple of problems
with persist within the non-supersymmetric standard model, like the hierarchy problem, dark
matter and aspects of cosmology. Those are the exact reasons why supersymmetric models
were considered in the �rst place.
Other physicists (like [Ryd10]) consider the possibility of supersymmetry and grand uni�cation
working both at the same time, as supersymmetry would solve the problems of the GUT of
the not perfect gauge coupling uni�cation and the predicted lifetime of the proton. But again,
experimental evidence is lacking due to the extremely high energies an which those theories
begin to predict di�erent results than the Standard Model.

8.4.3 Coupling Uni�cation as a coincidence of nature

The Standard Model of Particle Physics is only an e�ective description of the currently known
phenomena of particle physics. The Standard Model will certainly break down at the Planck
scale where gravity can no longer be neglected. Therefore the search for beyond the Standard
Model physics is one way of maybe being able to extend and change the current theory and then
maybe �nd a way to incorporate gravity. Until this is achieved, it is impossible to determine
whether the coupling uni�cation is a physical necessity of the theory or just the way nature
turned out to be.
This might seem quite unsatisfactory but if the only way to account for the uni�cation is to
consider hypothetical particles out of range of experiments, this remains a viable option in the
explanation of coupling uni�cation.

9 The Higgs Quartic Coupling λ

The Higgs quartic coupling λ is one of the parameters of the two loop β functions for the
Standard Model of Particle Physics. It is the coupling constant of the scalar �eld quartic
self interaction. The Higgs quartic coupling λ is of special interest in for the evaluation of
possible �aws in the Standard Model of Particle Physics due to the fact that in equation (8),
the assumption λ > 0 was made. This assumption is necessary for the potential of the Higgs
�eld to have a stable minimum. In order to explore the implications of this assumption, it is
important to know and understand the running of the Higgs quartic coupling λ.
The β function of the Higgs quartic coupling was already used an solved in the discussion of
the three gauge couplings on two loop level. The most important term in the running of λ is
the one proportional to y4t , which is derived from diagrams like the left one below.
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� as a correction to:�
It is unfortunate that exactly on this term, SARAH and [BDG+13] do not agree. The two loop
Renormalization Group Equations are dependant on the exact renormalization scheme, and
therefore it is possible for two di�erent derivations of the β-functions to not match, as it is the
case here. But nonetheless, since exact numerical solutions match to su�cient accuracy for a
phenomenological discussion, both will be used in the following analysis.

9.1 The Running of λ in the Standard Model

During the calculations for the running couplings in the previous chapters, the running of λ
and yt was calculated as:

(a) Two Loop Running of λ (blue) and yt (purple)
in the SM, using the RK4 routine

(b) Two Loop Running of λ (blue) and yt (purple)
in the SM, calculated by SARAH

Because of the sensitivity of the running of λ on the starting values, it is necessary to
include radiative corrections to the equations which connect physically observable parameters
to the starting values, as explained in section 2.3 for the tree-level equations. For the previous
discussion, this was not necessary because these changes are small and the di�erential equations
were not as sensitive to them as the two loop β-function for the Higgs quartic coupling is.
The loop-corrected values are taken from [BDG+13, Table 3]. Due to this source, a change of
renormalization conditions, now no longer using MZ but rather M = Mt (top-quark-mass) as
the renormalization point is necessary.

Table 4: Values for the corrected fundamental SM parameters

Equations, corrected to Order: λ(Mt) yt(Mt) g2(Mt) gY (Mt) = g1 ·
√

3
5

Leading Order (LO, tree-level) 0.13023 0.99425 0.65294 0.34972
Next to Leading Order (NLO) 0.12879 0.94953 0.64755 0.35937
Next to Next to Leading Order (NNLO) 0.12720 0.93849 0.64822 0.35760
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The value of g3 or α3 is measured directly, and therefore receives no corrections to any
equation, it just has to be run from MZ to Mt. The value is taken from [BDG+13, Eq. 60] and
is:

g3(Mt) = 1.1666 (94)

The numerical solver was run using all three sets of starting conditions and yields the following
results. For comparison, the already discussed tree level result is shown again.

(a) Tree Level (repeated) (b) Leading Order

(c) Next to Leading Order (d) Next to Next to Leading Order

Figure 5: Two Loop Running Couplings of λ and yt, using di�erent sets of starting values

In the above Graphs, it can be seen that the region in which λ is negative is quite sensitive
to the starting values. The biggest uncertainty of those values, calculated from experimental
data, is the exact value of the mass of the top quark. To analyse this dependency, the following
equations show the dependency of the NNLO starting values on the top mass (the equations
are taken from [BDG+13], but ignoring all other dependencies).
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λ(Mt) = 0.12711− 0.00004

(
Mt

GeV
− 173.5

)
(95)

( λ including NNNLO for pure QCD results)

yt(Mt) = 0.93558 + 0.00550

(
Mt

GeV
− 173.5

)
(96)

g2(Mt) = 0.64822 + 0.00004

(
Mt

GeV
− 173.5

)
(97)

g1(Mt) =

√
5

3

(
0.35761 + 0.00011

(
Mt

GeV
− 173.5

))
(98)

g3(Mt) = 1.1666− 0.00046

(
Mt

GeV
− 173.5

)
(99)

Using those equations, a new, more exact running of the couplings is done for the value of
Mt = 173.5 (values from [JBeaPDG12]), and for Mt± 3σ = 173.5± 3 · 1.4GeV . The results can
be seen in the graph below.

Figure 6: Di�erent Runnings of λ using varying values for Mt

This calculation shows that the crossing of zero for the Higgs quartic coupling not happen-
ing at all is within three standard deviations of the currently measured physical parameters.
Therefore it is statistically probable that λ remains positive everywhere up to the Planck scale,
but it is still worth discussing why the Standard Model is so extremely close to this potential
instability which is explained in the next chapter.

9.2 Possible Implications of the Running of λ

Many di�erent and in most cases more exact studies of the running of the Higgs quartic coupling
using more exact measurements of the top quark mass, like [BDG+13], show that it is highly
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unlikely that the quartic coupling never turns negative up to the Planck scale. Therefore the
implication of the running of λ have been a topic for discussion on many occasions, like it was
the case for [Esp14].
The running of λ to a point where λ < 0 would mean that the assumption of a nonzero but
�nite vacuum expectation value for the Higgs �eld in the Standard Model would no longer hold.
In this region the Higgs potential would no longer have a minimum value. The vacuum of a
theory is de�ned as the minimum of all �elds contained in the theory, therefore this poses a
problem in the de�nition of the vacuum. Because of the implications the Higgs �eld has on
the electro-weak symmetry breaking, this is usually called the instability of the electroweak
vacuum. As the strong nuclear force, represented by SU(3) does not take any part in the
symmetry breaking, it is usually excluded in the discussions of the instability.
Two possible consequences could be the case in nature, which is what any physics model wants
to describe.
First, it can be calculated that the electroweak vacuum actually might be unstable, but the
decay time is much larger than the current lifetime of the universe, and therefore the vacuum
has not decayed yet. Following this, a nonzero but �nite vacuum expectation value of the Higgs
�eld and therefore the description in the Standard Model is preserved. This would imply that
λ is allowed to turn negative, but its absolute value has to remain small, otherwise the decay
time would drop dramatically. This state of the universe is usually called meta-stable. If the
universe is meta-stable, this would mean, as a lot of physicists put is:

"The universe is living at the edge."1.

To many physicists this is counter-intuitive, as one expects nature to be stable and not just
completely change at the decay of its vacuum.
The other possibility is that some physics beyond the Standard Model exist that keep the value
of λ from getting that close to zero in the �rst place, ensuring the stability of the electroweak
vacuum. What type of physics and the theory behind this is is currently totally unknown, as no
experimental data suggests any theories. Two potential candidates are again Supersymmetry
and Grand Uni�cation, both providing means to circumvent the instability of the vacuum.

9.3 The Higgs Quartic Coupling in the MSSM

The Minimal Supersymmetric extension of the Standard Model is, by replacing all �elds in the
SM with super�elds, a theory with more symmetry than the SM. Hence the name. Due to this
added symmetry, the value of λ is no longer a free parameter to be taken from experiment,
but is determined by the electroweak couplings. A thorough explanation can be found in the
introduction of [DHHP02] .
This is not the end of the added complexity of the Higgs sector in the MSSM as, to be consistent
with super-symmetry, not one but two Higgs scalars exist in the MSSM, posing all kinds of
restrictions on Higgs masses, potentials and couplings. Therefore the discussion of the stability
of the electroweak vacuum is more complicated, as it is not a simple crossing into the negative
for λ.

1from [Esp14]
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Some discussions see this as a hint towards supersymmetry, as the whole set of problems
arising with the values of λ is di�erent there, but supersymmetry has a whole set of problems
of its own, as explained in chapter 8.4.2.

10 Further Research and Conclusion

10.1 Modi�cations to the SM Particle Content

In the discussion of possible beyond the Standard Model physics, many theories consider added
particles at an energy scale higher than currently reached by experiment. This enables those
theories to have di�erent behaviour in the running of the couplings while still matching the
experimental results. It is therefore interesting to try to analyse how the adding of a single
particle to the Standard Model at a certain energy scale changes the theory.
The minimal alteration of the Standard Model in adding fermionic matter would be to add a
pair of Weyl-fermions charged under only one of the three fundamental forces, in this conjugate
representations under SU(3) for the pair (i.e (3, 1)0 and (3̄, 1)0). It is not possible to add just
one Weyl Fermion to the Standard Model because this would cause many inconsistencies within
the model description.
The β functions for the altered Standard Model are derived by SARAH, using a modi�ed version
of the SM model �les. A mass parameter for those added fermions is included, independent of
the electroweak symmetry breaking for the generation of particle masses. The calculation of
the β-functions in SARAH are done in the massless limit, therefore the results are independent
of this mass parameter. In order to simulate that the added particles only have an e�ect above
a certain energy scale (i.e. their mass), the β functions are taken from SARAH and used in a
modi�ed version of the RK4 numerical solver. The unmodi�ed Standard Model equations are
solved up to the energy scale at which the particles are added, using the NNLO starting values
of the previous chapter. All generations of new particles are added at the same energy scale.
Then the equations are changed to the ones of the modi�ed Standard Model, simulating the
e�ects the added particles have, and the running is �nished up to the Planck scale.
This was done in three cases, using one, two or three generations of the added fermion pair,
just as there are three generations of every other matter particle in the Standard Model. The
SARAH output for the three cases can be found in Appendix D. In each of the three cases,
the mass parameter of the added fermions was varied between 103 and 1017GeV in logarithmic
steps of 2. Since the e�ect of the modi�cations to the theory are quite small, the e�ects of the
alterations are only visible if the mass parameter of the added fermions is far below the point
in which the discussed phenomena happen in the Standard Model. Therefore all cases in which
the pair of fermions is added above 107GeV are not suited for discussion here, as they are not
much di�erent than the Standard Model itself.
The complete set of graphs of these calculations can be found in Appendix E.

10.2 Discussion of the added Fermionic Matter to the SM

The graphs in appendix E con�rm that if the generations of the added fermion pairs are added
at a lower energy scale, their implications are stronger. The same goes for more generations of
the added fermion pairs. Therefore, the maximum impact of the modi�cations to the Standard
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Model can be seen in adding three generations at a scale of 103GeV , as it is shown below and
in appendix E.

Figure 7: Modi�ed SM, added three generations of the pair of fermions at mass 103GeV

This is the only graph presented here because all others show the same behaviour, only less
strong and at higher energy scales.
The adding of a fermion pair charged only under SU(3) has e�ects on both, coupling uni�ca-
tion and the stability of the electroweak vacuum. In the maximum case, the running of λ does
not cross into the negative region any more, therefore ensuring the correctness of the Standard
Models description of the electroweak symmetry breaking. At the same time, the coupling
uni�cation gets worse if the pair of fermions is added, pushing the uni�cation of g3 and g2 far
beyond the Planck scale in the maximum modi�cation case.
This leads to two conclusions, both discouraging beyond the Standard Model physics if such a
pair of fermions in three generations were to be found in experiment at a scale of 103GeV . In
this case, the altered Standard Model would get rid of the problem of the potential instability
of the electroweak vacuum and many hints towards coupling uni�cation. Therefore this would
strengthen the description the Standard Model gives of Particle Physics, just with a di�erent
matter content.
All of this only holds in the maximum case. But in this case the added fermions should already
have shown up in current experiments on the biggest particle accelerators, with the LHC at
the CERN already having done experiments at 7 · 103GeV .
If some of the cases with less than three generations of the added fermions are found to be
true, this poses a di�erent question. All other fermions in the Standard Model come in three
generations, therefore one that does not is considered strange. It is currently not known why
there are exactly three generations for all fermions, but it has been found to be the case in
nature.

The next steps in the evaluation of modi�cations to the Standard Model of Particle Physics
would be to consider pairs of fermions charged under SU(2) or U(1) only, and seeing what
types of implications these would have on the two phenomena discussed here. But this poses
tough problems in the method applied in this thesis, as SARAH ran into problems deriving
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those β-functions.

10.3 Conclusion

The topic of beyond the Standard Model physics remains a highly interesting one, as many
of the predictions of the Standard Model are in regions currently unavailable or only lightly
touched upon by experiment. A real measurement of the running of gauge couplings up to the
scales of predicted coupling uni�cation is far out of reach.
As soon as experimental evidence is found that is not described in the Standard Model, the
search for new models is encouraged into this direction. And at least at the Planck scale this
is going to happen. Until such experimental evidence is found, a huge variety of theories are
considered and prepared and checked with experimental data, as none of them can be excluded.
Even if none of them are later found to be true, advances in the physical description of nature
are made as new methods and mathematical descriptions are developed which might be applied
to other �elds than particle physics.
Taking all of the mentioned hints and possibilities that were discussed in this thesis, and
combining them with all other research done on this �eld, most physicists think it would be
too much of a coincidence for all of the discussed phenomena to happen by chance.
Therefore they believe that some physics beyond the Standard Model must exist below the
Planck scale. But proof of that has yet to be found in further experiments.
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Appendix

A Runge Kutta 4 Code for Numerical Solutions

The following code is written in C++ and uses the methods and de�nitions in "nrutil.c" from
the Numerical Recipes.

#define NRANSI

#include "nrutil.h"

#include <stdio.h>

#include <math.h>

#include <cmath>

const double pi =3.1415926535897932384626433832795028841971; //taken from: www.pible.de

void rk4(float y[], float dydx[], int n, float x, float h, float yout[],

void (*derivs)(float, float [], float []))

{//Runge Kutta 4 Method, taken from the Numerical Recipies.

int i;

float xh,hh,h6,*dym,*dyt,*yt;

dym=vector(1,n);

dyt=vector(1,n);

yt=vector(1,n);

hh=h*0.5;

h6=h/6.0;

xh=x+hh;

for (i=1;i<=n;i++) yt[i]=y[i]+hh*dydx[i];

(*derivs)(xh,yt,dyt);

for (i=1;i<=n;i++) yt[i]=y[i]+hh*dyt[i];

(*derivs)(xh,yt,dym);

for (i=1;i<=n;i++) {

yt[i]=y[i]+h*dym[i];

dym[i] += dyt[i];

}

(*derivs)(x+h,yt,dyt);

for (i=1;i<=n;i++){

yout[i]=y[i]+h6*(dydx[i]+dyt[i]+2.0*dym[i]);

}

free_vector(yt,1,n);

free_vector(dyt,1,n);

free_vector(dym,1,n);

}

void derivs(float x, float y[], float dydx[]){
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//RGEs taken from the Buttazzo paper.

dydx[1] = 3.0/5.0*1.0/(16.0*pi*pi)*41.0/6.0*y[1]*y[1]*y[1]+y[1]*y[1]*y[1]

*3.0/5.0/(4.0*4.0*4.0*4.0*pi*pi*pi*pi)*(199.0/18.0*3.0/5.0*y[1]*y[1]+

27.0/6.0*y[2]*y[2]+44.0/3.0*y[3]*y[3]-17.0/6.0*y[4]*y[4]);

dydx[2] = -1/(16*pi*pi)*19.0/6.0*y[2]*y[2]*y[2]+y[2]*y[2]*y[2]/(4.0*

4.0*4.0*4.0*pi*pi*pi*pi)*(9.0/6.0*3.0/5.0*y[1]*y[1]+35.0/6.0*y[2]*y[2]

+12.0*y[3]*y[3]-3.0/2.0*y[4]*y[4]);

dydx[3] = -1/(16*pi*pi)*7.0*y[3]*y[3]*y[3]+y[3]*y[3]*y[3]/(4.0*4.0

*4.0*4.0*pi*pi*pi*pi)*(11.0/6.0*3.0/5.0*y[1]*y[1]+9.0/2.0*y[2]+y[2]

-26.0*y[3]*y[3]-2.0*y[4]*y[4]);

dydx[4] = 1.0/16/pi/pi*y[4]*(9.0/2.0*y[4]*y[4]-17.0/12.0*y[1]*

y[1]*3.0/5.0-9.0/4.0*y[2]*y[2]-8.0*y[3]*y[3])+

1.0/(4.0*4.0*4.0*4.0*pi*pi*pi*pi)*y[4]*(y[4]*y[4]*(-12.0*y[4]*y[4]

-12.0*y[5]+36.0*y[3]*y[3]+225.0/16.0*y[2]*y[2]+393.0/80.0*y[1]*y[1])

+6.0*y[5]*y[5]-108.0*y[3]*y[3]*y[3]*y[3]-23.0/4.0*y[2]*y[2]*y[2]*y[2]

+1187.0/600.0*y[1]*y[1]*y[1]*y[1]+9.0*y[3]*y[3]*y[2]*y[2]+19.0/15.0

*y[3]*y[3]*y[1]*y[1]-9.0/20.0*y[2]*y[2]*y[1]*y[1]);

dydx[5]=2.0/16.0/pi/pi*(y[5]*(12*y[5]+6*y[4]*y[4]-9.0/2.0*y[2]

*y[2]-9.0/10.0*y[1]*y[1])-3.0*y[4]*y[4]*y[4]*y[4]+9.0/16.0*y[2]

*y[2]*y[2]*y[2]+27.0/400.0*y[1]*y[1]*y[1]*y[1]+9.0/40.0*y[2]

*y[2]*y[1]*y[1])+2.0/(4.0*4.0*4.0*4.0*pi*pi*pi*pi)*(y[5]*y[5]*

(-156.0*y[5]-72.0*y[4]*y[4]+54.0*y[2]*y[2]+54.0/5.0*y[1]*y[1])+

y[5]*y[4]*y[4]*(-3.0/2.0*y[4]*y[4]+40.0*y[3]*y[3]+45.0/4.0*y[2]*

y[2]+17.0/4.0*y[1]*y[1])+y[5]*(-73.0/16.0*y[2]*y[2]*y[2]*y[2]

+1887.0/400.0*y[1]*y[1]*y[1]*y[1]+117.0/40.0*y[1]*y[1]*y[2]*y[2])+

y[4]*y[4]*y[4]*y[4]*(15.0*y[4]*y[5]-16*y[3]*y[3]-4.0/5.0*y[1]*y[1])+

y[4]*y[4]*(-9.0/8.0*y[2]*y[2]*y[2]*y[2]-171.0/200.0*y[1]*y[1]*y[1]

*y[1]+63.0/20.0*y[2]*y[2]*y[1]*y[1])+305.0/32.0*y[2]*y[2]*y[2]*y[2]

*y[2]*y[2]-3411.0/4000.0*y[1]*y[1]*y[1]*y[1]*y[1]*y[1]-289.0/160.0

*y[1]*y[1]*y[2]*y[2]*y[2]*y[2]-1677.0/800.0*y[2]*y[2]*y[1]*y[1]*y[1]

*y[1]);

dydx[6]=1.0/16.0/pi/pi*3.0/5.0*11.0*y[6]*y[6]*y[6]+y[6]*y[6]*y[6]

/(4.0*4.0*4.0*4.0*pi*pi*pi*pi)*3.0/5.0*(199.0/9.0*3.0/5.0*y[6]*y[6]+

9.0*y[7]+y[7]+88.0/3.0*y[8]*y[8]-26.0/3.0*y[9]*y[9]);

dydx[7]=1.0/16.0/pi/pi*y[7]*y[7]*y[7]+y[7]*y[7]*y[7]/(4.0*4.0*4.0*4.0

*pi*pi*pi*pi)*(3.0*3.0/5.0*y[6]*y[6]+25.0*y[7]*y[7]+24.0*y[8]*y[8]-6.0*y[9]*y[9]);

dydx[8]=-3.0/16.0/pi/pi*y[8]*y[8]*y[8]+y[8]*y[8]*y[8]/(4.0*4.0*4.0*4.0*pi*pi

*pi*pi)*(11.0/3.0*y[6]*y[6]+9.0*y[7]*y[7]+14.0*y[8]+y[8]-4.0*y[9]*y[9]);
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dydx[9]=y[9]/16.0/pi/pi*(6.0*y[9]*y[9]-13.0/9.0*3.0/5.0*y[6]*y[6]-3.0*y[7]

*y[7]-16.0/3.0*y[8]*y[8]);

}

int main (void) {

FILE * pFile;

float end = 40; //end point for iteration

float h = 0.00005; //stepsize

float x = 0.0; //startpoint

float dydx[10], yout[10], y[10];

//first 5 values for SM, may be changed to solve for different starting conditions

y[1] = 0.3555*sqrt(5.0/3.0); //U(1), with GUT normalization

y[2] = 0.6517; //SU(2)

y[3] = 1.220; //SU(3)

y[4] = 0.9974; //top yukawa coupling

y[5] = 0.1312; //higgs quartic coupling

//next four for MSSM

y[6]=y[1];//U(1)

y[7]=y[2];//SU(2)

y[8]=y[3];//SU(3)

y[9]=y[4];//top yukawa

pFile = fopen ("2loop_LO.txt","w");

fprintf (pFile, "%f %f %f %f %f %f %f %f %f %f \n", x, y[1],

y[2], y[3], y[4], y[5],y[6],y[7],y[8],y[9]);

while (x<end){

derivs(x, y, dydx);

rk4(y, dydx, 9, x, h, yout, *derivs);

x += h;

//printf("x = %f\n", x);

for (int j = 1; j <= 9; j++){

y[j] = yout[j];

//printf("yout[%d] = %f\n", j, yout[j]);

}

fprintf (pFile, "%f %f %f %f %f %f %f %f %f %f \n", x,

y[1], y[2], y[3], y[4], y[5],y[6],y[7],y[8],y[9]);

}

fclose (pFile);

return 0;}

#undef NRANSI

/* (C) Copr. 1986-92 Numerical Recipes Software */
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B SARAH Output for the SM

Gauge Couplings
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+
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u

)
− 9

2
g42Tr

(
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)
+

17
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(
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+
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(
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u

)
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(
YuY
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)
− 72λ2Tr

(
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+
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g21Tr

(
YdY
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d YdY

†
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− 64g23Tr

(
YdY
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d YdY

†
d

)
− 3λTr

(
YdY

†
d YdY
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d
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YdY
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g21Tr
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YeY
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Yukawa Couplings

β
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)
36



+ Yu

(
3Tr
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(
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(
YuY

†
u

)
+ 3375g22Tr
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C SARAH Output for the MSSM

Gauge Couplings
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Trilinear Superpotential Parameters
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D SARAH Output for the modi�ed SM

D.1 One generation of the added fermion pair, charged under SU(3)

Gauge Couplings
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Yukawa Couplings
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D.2 Two generations of the added fermion pair, charged under SU(3)
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D.3 Three Generations of the added fermion pair, charged under
SU(3)
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Yukawa Couplings
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E Graphs of the modi�ed Standard Model

Figure 8: Modi�ed SM, added one generation of the pair of fermions at mass 103GeV

Figure 9: Modi�ed SM, added one generation of the pair of fermions at mass 105GeV
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Figure 10: Modi�ed SM, added one generation of the pair of fermions at mass 107GeV

Figure 11: Modi�ed SM, added two generations of the pair of fermions at mass 103GeV

Figure 12: Modi�ed SM, added two generations of the pair of fermions at mass 105GeV
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Figure 13: Modi�ed SM, added two generations of the pair of fermions at mass 107GeV

Figure 14: Modi�ed SM, added three generations of the pair of fermions at mass 103GeV

Figure 15: Modi�ed SM, added three generations of the pair of fermions at mass 105GeV
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Figure 16: Modi�ed SM, added three generations of the pair of fermions at mass 107GeV
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