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0.1 Conformal field theory in d dimensions

0.1.1 Conformal coordinate transformations
sec:CFT

Conformal coordinate transformations are defined as those local transformations xµ 7→ x′µ(x)

that leave angles invariant. In a Euclidean d-dimensional space Rd we therefore can write

dxµ dxµ = Ω−2(x) dx′µ dx′µ. (1) eq:metricTransf

The corresponding infinitesimal coordinate transformation from old coordinates x to new ones

x′ looks like

x′
µ

= xµ + vµ(x) (2)

and we have

Ω(x) = 1 − σ(x) , σ(x) =
1

d
∂ · v(x) . (3) 2,3

Equivalently to (1) we can formulate an equation for the vector v, the conformal Killing equa-

tion,

∂µvν + ∂νvµ = 2σ(x) ηµν , (4) eq:confKilling

taking its trace yields the expression (3) for σ(x). We will work in d dimensional Euclidean

space where ηµν = δµν . Solutions v to (4) are referred to as conformal Killing vectors, the most

general one reads

vµ = aµ + ωµν x
ν + λ xµ + bµx

2 − 2 (b · x)xµ , ωµν = −ωνµ . (5) eq:solutionsForv

This Killing vector leads to the scale factor σ(x) = λ − 2(b · x). Equation (5) is valid for any

d. Note that in the special case of d = 2 the conformal Killing equation (4) is nothing but the

Cauchy-Riemann equations

∂1v1 = ∂2v2 , ∂1v2 = −∂2v1 . (6)

Thus, in d = 2 all holomorphic functions v(x) are solutions and generate conformal coordinate

transformations. In this case we have an infinite number of functions solving (5), accompanied

by an infinite number of associated conserved quantities.

However, we will mostly consider theories in d = 4 dimensions, for example in Minkowski space

or on the boundary of Ads5. Here we have a finite amount of conserved quantities. Counting
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the independent components of the factors in the solutions (5) amounts to a total number of

15:

aµ 4

ωµν + 6

λ + 1

bµ + 4

total 15

The general conformal Killing vector (5) may be viewed as the combination of elementary

transformations. The group of ”large” conformal transformation is generated by infinitesimal

elements of the conformal algebra. We define locally orthogonal tranformations R correspond-

ing to a group element g of the conformal group as

Rg
µα(x) := Ωg(x)

∂x′µ
∂xα

. (7)

One can easily show that R ∈ O(d), i.e. that Rg
µα(x)Rg

να(x) = δµν . The group multiplication

and the inverse are given as follows:

Rg′(gx)Rg(x) = Rg′g(x) ,
(
Rg(x)

)−1
= Rg−1

(gx) (8)

With these we can construct translations and rotations as

x′µ = Rµν xν + aµ , Ω(x) = 1 . (9)

Scale transformations (↔ λ) and special conformal transformations (↔ bµ) involve a non-trivial

Ω factor:

x′µ = λxµ , Ω(x) = λ (10)

x′µ =
xµ + bµx

2

Ωg(x)
, Ωg(x) = 1 + 2b · x+ bx2. (11)

Together, these transformations form a group isomorphic to SO(d + 1, 1) (or SO(d, 2) in

Minkowski spacetime). All transformations belonging to this group can be constructed by

performing translations, rotations, and inversions ; the latter are given by

x′µ =: (ix)µ =
xµ
x2

, Ωi(x) = x2 (12)

Ri
µν(x) =: Iµν(x) = δµν − 2

xµxν
x2

. (13)

Special conformal transformations can be composed by concatenating inversion + translation +

inversion.
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0.1.2 Conformal fields and correlation functions

So far we examined coordinate transformations. Now we will investigate the behaviour of fields.

For instance, the N = 4 super Yang Mills theory (SYM) mentioned in the introduction only

contains fields transforming covariantly under the conformal group. In general QFTs (such as

QED or QCD), conformal symmetry is generically broken by quantum effects (anomalies).

Necessary condition for a field theory to be conformally symmetric is a vanishing β-function.

The latter describes the change of a coupling g with energy scales µ, i.e.

β(g) = µ
∂g

∂µ
, (14)

so β(g) = 0 rephrases scale invariance.

A conformally covariant operator O of a conformal field theory (CFT) transforms as follows

under infinitesimal conformal transformations (with Killing vector v and σ = ∂ · v/d):

δvO = − (LvO) , Lv = v(x) · ∂ + ∆σ(x)− 1

2
∂[µvν](x)Sµν (15)

Here, ∆ denotes the scaling dimension of the operator O and Sµν a generator of O(d) in an

appropriate representation. It only affects spinor-, vector- and tensor fields but no scalars ϕ:

δvϕ = −
(
v(x) · ∂ + ∆σ(x)

)
ϕ (16)

In general QFTs, correlation functions are defined as time ordered vacuum expectation values,

e.g. a two point function of some field ϕ is given by

〈ϕ(x)ϕ(y)〉 := 〈0| T ϕ(x)ϕ(y) |0〉 , (17) 2,5

three-, four- and higher point functions by analogous expressions. Generically, their computa-

tion is quite involved and possible only in the framework of perturbation theory.

Let us also give the path integral analogue of the definition (17) in the operator approach. In a

scalar field theory governed by action S[ϕ], the partition function Z and a general correlation

function 〈O〉 is defined by the path integrals

Z :=

∫
Dϕ e−S[ϕ] , 〈O〉 :=

1

Z

∫
Dϕ O e−S[ϕ] . (18)

In CFTs, conformal symmetry is so strong that it determines the form of the two- and three

point correlation functions up to a managable number of parameters. In the notation (x−y)2 =

(x− y)µ(x− y)µ, the two- and three point functions of scalars ϕi with scale dimensions ∆i are

given by

〈ϕ1(x)ϕ2(y)〉 :=
c δ∆1,∆2

(x− y)2∆1
(19)
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〈ϕ1(x)ϕ2(y)ϕ3(z)〉 :=
k

(x− y)∆1+∆2−∆3 (y − z)−∆1+∆2+∆3 (x− z)∆1−∆2+∆3
(20)

with constants c, k determined by the field content.

Four point correlators 〈ϕ1(x)ϕ2(y)ϕ3(z)ϕ4(w)〉 are less constraint by the symmetry since they

involve dimensionless cross ratios (x−y)2

(z−w)2
and (x−z)2

(y−w)2
.

0.1.3 The energy momentum tensor in a CFT

The symmetric energy momentum tensor Tµν subject to the conservation law ∂µT
µν = 0 (or

rather ∇µT
µν = 0 in curved spacetime) generates the Noether currents associated with confor-

mal symmetry. The infinitesimal transformations with conformal Killing vector vµ gives rise to

the conserved current

jµ = T µν vν . (21)

In this subsection, we will now show an important property of the energy momentum tensor in

a conformal field theory, namely its tracelessness T µµ = 0.

It is a common method in QFT to introduce sources for operators in a QFT’s action, and then

express the operator (in correlation functions) as the functional derivative of the generating

functional. To do so, the action S0 of our theory is modified by an additive term which couples

the operator to its source. For instance consider some scalar operator ϕ and its source J ,

S[ϕ, J ] = S0[ϕ] +

∫
ddx ϕ(x) J(x) . (22)

Correlation function of that operator ϕ may now be calculated as the functional derivative of

the generating functional W [J ] := − lnZ[J ] of the theory with respect to the source J , e.g.

〈ϕ(x)〉 ∝ δW [J ]

δJ(x)
. (23)

One can also apply this procedure to vector- and tensor operators,

S = S0 +

∫
ddx

(
ϕJ + VµA

µ + Tµν g
µν
)
. (24)

It can be shown that the source of the energy momentum tensor is exactly the quantity that

has the properties of the metric. So the energy momentum tensor is obtained by calculating

Tµν(x) = − 2√
| det g|

δW [g]

δgµν(x)
. (25) eq:defEMTensor

The metric transforms under conformal coordinate transformations induced by a vector field v

as δvg
µν = 2σgµν , so requiring invariance of W implies

0 = δvW [g] =

∫
ddx

δW [g]

δgµν(x)
δvg

µν(x) =

∫
ddx

(
−
√
| det g|Tµν

2

)
·
(
2σ gµν

)
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= −
∫

ddx
√
| det g|T µ

µ · σ . (26)

Since T µ
µ vanishes upon integration against an arbitrary function σ, one can conclude the

announced tracelessness of the energy momentum tensor

T µ
µ = 0 . (27)


