
Introduction to Gauge/Gravity Duality

Examples II

To hand in Friday 4th November in the examples class

I. Large N expansion.

Evaluate the order of N associated with the two diagrams given. (3 points)

II. Coordinates of AdS_{d+1} .

Lorentzian AdS_{d+1} can be defined by the locus

$$-L^{2} = \eta_{ab}X^{a}X^{b} = -\left(X^{d+1}\right)^{2} - \left(X^{0}\right)^{2} + \sum_{i=1}^{d} \left(X^{i}\right)^{2}, \tag{1}$$

where $X \in \mathbb{R}^{2,d}$ and $ds^2 = \eta_{ab}X^aX^b$ with $\eta = \text{diag}(-1,1,1,\ldots,1,-1)$. In the following we parametrize the locus (1) in different ways.

- a) Draw a picture of AdS_2 embedded in $\mathbb{R}^{2,1}$. (2 points)
- b) The global coordinates (ρ, τ, Ω_i) are defined by

$$\begin{array}{rcl} X^{d+1} & = & L \cosh \rho \, \sin \tau \, , \\ X^0 & = & L \cosh \rho \, \cos \tau \, , \\ X^i & = & L \sinh \rho \, \Omega_i \, , \end{array}$$

with i=1,...,d and $\sum_{i=1}^{d}\Omega_{i}^{2}=1$. Using this parametrization calculate the induced metric $ds^{2}=g_{\mu\nu}dx^{\mu}dx^{\nu}$ (where $x^{\mu}\in\{\rho,\tau,\Omega_{i}\}$) for AdS_{d+1} in global coordinates. (3 points)

c) Replace ρ by $r \equiv L \sinh \rho$ and show that the metric can be written in the form

$$ds^2 = -H(r)dt^2 + H(r)^{-1}dr^2 + r^2d\Omega_{d-1}^2,$$

where $d\Omega_{d-1}^2 = \sum_{i=1}^d d\Omega_i d\Omega_i$. is the metric of the unit (d-1)-sphere, S^{d-1} . (2 points)

d) The Poincare patch coordinates (x^i, u) with i = 1, ..., d are defined by

$$\begin{array}{rcl} X^{d+1} + X^d & = & u \,, \\ -X^{d+1} + X^d & = & v \,, \\ X^i & = & \frac{u}{L} x^i \,. \end{array}$$

Use the defining equation (1) to eliminate v in terms of u and x^i and show that the induced metric for (u, x^i) with i = 1, ..., d takes the form

$$ds^{2} = L^{2} \frac{du^{2}}{u^{2}} + \frac{u^{2}}{L^{2}} dx^{i} dx_{i}.$$

Finally introduce $z = \frac{L^2}{u}$ and show that the metric is given by

$$ds^2 = \frac{L^2}{z^2} \left(dz^2 + dx^i dx_i \right)$$

Which part of the AdS spacetime is not covered by these coordinates (Hint: z takes only positive values (Why?)). (3 points)