Towards Precision SUSY Studies at Colliders

W. Hollik, MPI München

String Phenomenology 2005 Munich, June 2005

- Introduction
- Precision studies with standard particles
- Precision studies with Higgs bosons
- Precision studies with SUSY particles

Precision analysis required for

- Indirect tests of the MSSM \rightarrow virtual SUSY effects in precision observables
- Precision studies for SUSY particles
 - \rightarrow determination of masses & couplings
 - \rightarrow reconstruction of model parameters
- Direct versus indirect tests
 - \rightarrow precision observables for precisely measured SUSY parameters
 - \rightarrow consistency check

Processes with external

- (i) standard particles
- (ii) Higgs bosons, especially light Higgs h^0

(iii) SUSY particles

- the chargino and neutralino sector
- the sfermion sector

recent review:

Heinemeyer, WH, Weiglein, hep-ph/0412214

(expected) experimental precision

error for	LEP/Tev	Tev/LHC	LC	GigaZ
M_W [MeV]	33	15	15	7
$\sin^2 heta_{ m eff}$	0.00017	0.00021		0.000013
m_{top} [GeV]	4.3	2	0.2	0.13
M_{Higgs} [GeV]	_	0.1	0.05	0.05

together with

 $\delta M_Z = 2.1 \text{ MeV}$ (LEP)

 $\delta G_{\rm F}/G_{\rm F} = 1 \cdot 10^{-5}$ (μ lifetime)

Detailed analysis for SPS1a benchmark scenario: potential of LHC (300 fb⁻¹) alone and LHC + LC

	LHC	LHC+LC
$\Delta m_{\tilde{\chi}^0_1}$	4.8	0.05 (input)
$\Delta m_{\tilde{l}_R}$	4.8	0.05 (input)
$\Delta m_{\tilde{\chi}^0_2}$	4.7	0.08
$\Delta m_{\tilde{q}_L}$	8.7	4.9
$\Delta m_{\tilde{q}_R}$	11.8	10.9
$\Delta m_{ ilde{g}}$	8.0	6.4
$\Delta m_{\tilde{b}_1}$	7.5	5.7
$\Delta m_{\tilde{b}_2}$	7.9	6.2
$\Delta m_{\tilde{l}_L}$	5.0	0.2 (input)
$\Delta m_{ ilde{\chi}_4^0}$	5.1	2.23

LHC+LC accuracy limited by LHC jet energy scale resolution

SPS 1a benchmark scenario:

favorable scenario for both LHC and LC

 \Rightarrow LC input improves accuracy significantly

Physics Complementarity of LHC an LC, G. Weiglein, Denver 05/2004 - p.27

Comparison of electro-weak precision observables with theory:

Sensitivity to loop corrections

sensitivity to internal particles (X)

 \downarrow

Precision observables: M_W , $\sin^2 \theta_{eff}$, m_h , $(g-2)_{\mu}$, b physics, ...

1.) Theoretical prediction for M_W in terms of $M_Z, \alpha, G_\mu, \Delta r$:

2.) Effective mixing angle: $\sin^2\theta_{\rm eff} = \frac{1}{4 |Q_f|} \left(1 - \frac{{\rm Re}\,g_V^f}{{\rm Re}\,g_A^f}\right)$

Higher order contributions:

$$g_V^f \to g_V^f + \Delta g_V^f, \quad g_A^f \to g_A^f + \Delta g_A^f$$

Models of SUSY breaking

generic MSSM: 105 parameters (masses, mixing angles, phases) reduced to few parameters in specific models

mSUGRA: m_0, n_0	$n_{1/2}, A_0,$	$\tan\beta$,	$\operatorname{sign}($	$\mu)$	
--------------------	-----------------	---------------	------------------------	--------	--

GMSB: $M_{\text{mess}}, N_{\text{mess}}, \tan\beta, \operatorname{sign}(\mu)$

- AMSB: $m_{\text{aux}}, m_0, \tan\beta, \operatorname{sign}(\mu)$
- ightarrow mass parameters at the electroweak scale $(M_1, M_2, M_3, \mu, M_{\tilde{f}_{L,R}}, \ldots)$

Benchmark scenarios

"Snowmass points and slopes" (SPS), hep-ph/0202233

examples (mSUGRA): •SPS1a: $m_0 = 100$ GeV, $m_{1/2} = 250$ GeV, $A_0 = -100$, $\tan \beta = 10$, $\mu > 0$.

•SPS1b: $m_0 = 200$ GeV, $m_{1/2} = 400$ GeV, $A_0 = 0$, $\tan \beta = 30$, $\mu > 0$.

Global fits in the MSSM

[de Boer, Dabelstein, WH, Mösle, Schwickerath] [de Boer, Sander]

The Higgs sector of the MSSM

- Two $SU(2) \times U(1)$ doublets: $H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix}$, $H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}$ $H_i^0 = \frac{v_i + S_i + i P_i}{\sqrt{2}} \qquad \tan \beta = \frac{v_2}{v_1}$
- The soft SUSY-breaking mass terms for H_1^0 and H_2^0 are responsible for electroweak symmetry breaking (EWSB):

$$V_{\text{tree}} = (m_{H_1}^2 + \mu^2) |H_1^0|^2 + (m_{H_2}^2 + \mu^2) |H_2^0|^2 + B (H_1^0 H_2^0 + \text{h.c.}) + \frac{1}{8} (g^2 + g'^2) (|H_1^0|^2 - |H_2^0|^2)^2$$

- Five physical states: h, H, A^0, H^+, H^-
- Tree-level mass matrix for the CP-even sector:

$$\left(\mathcal{M}_{S}^{2}\right)^{\text{tree}} = \begin{pmatrix} m_{Z}^{2} c_{\beta}^{2} + m_{A}^{2} s_{\beta}^{2} & -\left(m_{Z}^{2} + m_{A}^{2}\right) s_{\beta} c_{\beta} \\ -\left(m_{Z}^{2} + m_{A}^{2}\right) s_{\beta} c_{\beta} & m_{Z}^{2} s_{\beta}^{2} + m_{A}^{2} c_{\beta}^{2} \end{pmatrix}$$

 $ightarrow m_h$ and m_H are predicted in terms of $m_Z,\,m_A$ and aneta

- Tree–level mass relation: $m_h^2 \leq \cos^2 2\beta m_Z^2$!!!
- Radiative corrections can push m_h well above the tree–level bound (e.g. m_h ≤ 135 GeV for typical parameter choices) and introduce a dependence on many MSSM parameters.

dressed Higgs propagators

$$(\Delta_{\text{Higgs}})^{-1} = \begin{pmatrix} q^2 - m_H^2 + \hat{\Sigma}_H(q^2) & \hat{\Sigma}_{hH}(q^2) \\ \hat{\Sigma}_{Hh}(q^2) & q^2 - m_h^2 + \hat{\Sigma}_h(q^2) \end{pmatrix}$$

- det = 0 $\rightarrow m_{h,H}^{\text{pole}}$
- diagonalization \rightarrow effective couplings (α_{eff})

renormalized self-energies $\widehat{\Sigma}$

- 1-loop: complete
- 2-loop: QCD corrections $\sim \alpha_s \alpha_t, \alpha_s \alpha_b$ Yukawa corrections $\sim \alpha_t^2$ [\rightarrow FeynHiggs]

$$X_t = A_t - \mu \cot \beta, \qquad \mathcal{M}_{\tilde{t}}^2 = \begin{pmatrix} m_{\tilde{t}_L}^2 & m_t X_t \\ m_t X_t & m_{\tilde{t}_R}^2 \end{pmatrix}$$

present theoretical uncertainty: $\delta m_h \simeq 4 \text{ GeV}$ [Degrassi, Heinemeyer, WH, Slavich, Weiglein]

SUSY particles

- LHC will see SUSY if at low energy scale
- LC and LHC⊕LC for precision studies
- Reconstruction of fundamental SUSY theory and breaking mechanism

from experiment:

→ precision analyses of masses and couplings including higher orders

from theory:

- \rightarrow accurate theoretical predictions to match exp. data
- \rightarrow loop contributions Lagrangian param \leftrightarrow observables
- \rightarrow RGEs for extrapolation to high scales

chargino/neutralino sector

complete at one loop [Fritzsche,WH/Eberl,Majerotto,...] renormalization and mass spectrum pair production in e^+e^- collisions

sfermion sector

renormalization and mass spectrum [WH, Rzehak]

 $\begin{pmatrix} m_f^2 + M_L^2 + M_Z^2 c_{2\beta} (I_f^3 - Q_f s_W^2) & m_f (A_f - \mu \kappa) \\ m_f (A_f - \mu \kappa) & m_f^2 + M_{\tilde{f}_R}^2 + M_Z^2 c_{2\beta} Q_f s_W^2 \end{pmatrix}$

sfermion pair production in e^+e^- collisions complete at one-loop [Arhrib, WH] s [Kovarik, Weber, Eberl, Majerotto] s

[Freitas, Miller, von Manteuffel, Zerwas] sleptons

squarks, sleptons squarks sleptons

sfermion decays into fermions and -inos

complete at one-loop [Guasch, WH, Solà]

Born complete 1-loop

Renormalization schemes

$\overline{\mathrm{DR}}$ scheme:

- Loop integrals: $\frac{2}{\epsilon} \gamma + \log 4\pi + \log \mu^2 \rightarrow \log \mu_{\overline{\text{DR}}}^2$
- + easy to implement
- observables are scale dependent in finite order perturbation theory
- + natural choice for GUT-inspired parameter sets (mSUGRA)

OS scheme:

- renormalization constants fixed by physical conditions
- renormalization constants complicated
- + observables are scale independent
- + well suited for calculations of cross sections and decay rates
 (e.g. pole masses → correct kinematical thresholds)

The SPA project is a joint study of theorists and experimentalists working on LHC and Linear Collider phenomenology. The study focuses on the supersymmetric extension of the Standard Model. The main targets are

- High-precision determination of the supersymmetry Lagrange parameters at the electroweak scale
- Extrapolation to a high scale to reconstruct the fundamental parameters and the mechanism for supersymmetry breaking

The SPA convention and the SPA Project are described in the report SPA.draft.ps.

http://spa.desy.de/spa

P. Zerwas, J. Kalinowski, H.U. Martyn,W. Hollik, W. Kilian, W. Majerotto,W. Porod, ...

SPA CONVENTION

- The masses of the SUSY particles and Higgs bosons are defined as pole masses.
- All SUSY Lagrangian parameters, mass parameters and couplings, including $\tan \beta$, are given in the \overline{DR} scheme and defined at the scale $\tilde{M} = 1$ TeV.
- Gaugino/higgsino and scalar mass matrices, rotation matrices and the corresponding angles are defined in the \overline{DR} scheme at \tilde{M} , except for the Higgs system in which the mixing matrix is defined in the on-shell scheme, the scale parameter chosen as the light Higgs mass.
- The Standard Model input parameters of the gauge sector are chosen as G_F , α , M_Z and $\alpha_s^{\overline{MS}}(M_Z)$. All lepton masses are defined on-shell. The *t* quark mass is defined on-shell; the *b*, *c* quark masses are introduced in \overline{MS} at the scale of the masses themselves while taken at a renormalization scale of 2 GeV for the light u, d, s quarks.
- Decay widths / branching ratios and production cross sections are calculated for the set of parameters specified above.

example: $\tilde{f}_1 = \tilde{t}_1$ [from SPA draft]

REFERENCE POINT SPS1a'

SPS1a' deriv. of Snowmass Point SPS1a: conform with Ω_{cdm} , LE data

mSUGRA values:

$$M_{1/2} = 250 \text{ GeV} \quad \text{sign}(\mu) = +1$$

 $M_0 = 70 \text{ GeV} \quad \tan \beta = 10$
 $A_0 = -300 \text{ GeV}$

 $\label{eq:expectation} \begin{array}{ll} \underline{\text{LE/cosmic parameters:}} & BR(b \rightarrow s\gamma) = 3.0 \times 10^{-4} \\ & \Delta [g_{\mu}-2]/2 = 34 \times 10^{-10} \\ & \Omega_{cdm}h^2 = 0.10 \end{array}$

micrOMEGAs FeynHiggs micrOMEGAs

POLE MASSES:

m	[GeV]	m	[GeV]
h^0	115.4	\tilde{e}_R	125.2
H^0	431.1	\tilde{e}_L	190.1
A^0	431.0	$\tilde{\nu}_e$	172.8
H^+	438.6	$ ilde{ au}_1$	107.4
$ ilde{\chi}_1^0$	97.75	$ ilde{ au}_2$	195.3
$ ilde{\chi}^0_2$	184.4	$\tilde{\nu}_{ au}$	170.7
$ ilde{\chi}^0_3$	406.8	\tilde{u}_R	547.7
$ ilde{\chi}^0_4$	419.6	\tilde{u}_L	565.7
$\tilde{\chi}_1^+$	184.2	\tilde{t}_1	368.9
$\tilde{\chi}_2^+$	421.1	\tilde{t}_2	584.9
\tilde{g}	607.6	$ ilde{b}_1$	506.3

 $BR(\tilde{\nu} \to \nu \chi_1^0) = 100\% \implies \tilde{\nu}$ invis.

Measurements

- edge effects at LHC
- decay spectra at ILC
- cross sections/asymmetries at ILC

	Mass	"LHC"	"LC"	"LHC+LC"
h^0	115.4	0.25	0.05	0.05
H^0	431.1		1.5	1.5
$ ilde{\chi}_1^0$	97.75	4.8	0.05	0.05
$ ilde{\chi}_2^0$	184.4	4.7	1.2	0.08
$ ilde{\chi}^0_4$	419.6	5.1	3 - 5	2.5
$\tilde{\chi}_1^{\pm}$	184.2		0.55	0.55
\tilde{e}_R	125.2	4.8	0.05	0.05
\tilde{e}_L	190.1	5.0	0.18	0.18
$ ilde{ au}_1$	107.4	5 - 8	0.24	0.24
\tilde{q}_R	547.7	7 - 12	—	5 - 11
\widetilde{q}_L	565.7	8.7	—	4.9
\tilde{t}_1	368.9		1.9	1.9
\tilde{b}_1	506.3	7.5	—	5.7
\tilde{g}	607.6	8.0	_	6.5

Example: Determination of SUSY parameters at LHC / LC

[M. Chiorboli, B.K. Gjelsten, J. Hisano, K. Kawagoe, E. Lytken, U. Martyn, D. Miller, M. Nojiri, P. Osland, G. Polesello, A. Tricomi '03]

Cascade decays: complicated decay chains for squarks and

Reconstructing Lagrange param.

based on 82 simulated measurements at LHC and ILC

Parameter	SPS1a'value	Fit error [exp]
M_1	103.3	0.1
M_2	193.4	0.1
M_3	568.9	7.8
μ	400.4	1.1
$M_{\tilde{e}_L}$	181.3	0.2
$M_{\tilde{e}_R}$	115.6	0.4
$M_{\tilde{\tau}_L}$	179.5	1.2
$M_{\tilde{u}_L}$	523.2	5.2
$M_{\tilde{u}_R}$	503.9	17.3
$M_{\tilde{t}_L}$	467.7	4.9
$m_{ m A}$	374.9	0.8
A_{t}	-525.6	24.6
aneta	10.0	0.3

Fig. 1. Running of the gaugino and scalar mass parameters in SPS1a' [SPheno 2.2.2]. Only experimental errors are taken into account; theoretical errors are assumed to be reduced to the same size in the future.

$\underline{\text{ERRORS}}$ SPS1a':	mSUGRA	Parameter, ideal	"LHC+LC" errors
	M_1	250. GeV	$0.18 { m ~GeV}$
	M_2	ditto	$0.26~{ m GeV}$
	M_3		$2.8 \ \mathrm{GeV}$
	M_{L_1}	70. GeV	$4.1 { m ~GeV}$
	M_{E_1}	ditto	$7.9~{ m GeV}$
	M_{Q_1}		11. GeV
	M_{U_1}		31. GeV
	M_{H_1}	ditto	$7.5~{ m GeV}$
	M_{H_2}		72. GeV
	A_t	-300. GeV	44. GeV
$ \begin{array}{ll} \hline \underline{\text{CONCLUSION}}: & - \text{ gauginos in excellent } \mathcal{O}[\text{per-mille}] \ \text{condition} \\ & - \text{ scalar leptons in good } \mathcal{O}[\text{per-cent}] \ \text{condition} \\ & - \text{ squarks in } \mathcal{O}[1] \ \text{condition} \end{array} $			

mSUGRA Fit:

	Param,ideal	Experimental error
M_U	$2.47\cdot 10^{16}~{\rm GeV}$	$0.02 \ 10^{16} \ { m GeV}$
α_U^{-1}	24.17	0.06
$M_{\frac{1}{2}}$	250. GeV	$0.2~{ m GeV}$
M_0^2	70. GeV	$0.2~{ m GeV}$
A_0	-300. GeV	13. GeV
μ	$402.9~{\rm GeV}$	$0.3~{ m GeV}$
aneta	10.	0.3

<u>General conclusion:</u> – universality can be tested in bottom-up approach in non-colored sector very well; – colored sector needs improvement

- mSUGRA fit of high quality

Conclusions

- Era of electroweak precision physics:
 - quantum effects have been established
 - strong indication for a light Higgs boson
- The MSSM is competitive to the SM
 - global fits of similar quality (slightly better)
 - natural: light Higgs boson
- $m_{h^{\circ}}$ is another precision observable
 - dependent on all SUSY sectors
 - accurate theoretical evaluation ($\delta m_{h^0} \simeq$ 4 GeV), to be further improved
- one-loop studies for SUSY processes are underway, many results and tools already available