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Part I:
Amplitudeology
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Amplitudeology

• Parke-Taylor formula: massive simplification of amplitudes in “spinor-helicity”
variables; Witten’s twistor string theory

• BCFW recursion: n-point amplitudes from n− 1-point amplitudes

• Unitarity methods to construct loop-level amplitudes

• BCJ relations: duality between colour and kinematics

• KLT relations: gauge-theory amplitudes2 = gravity amplitudes

• Grassmannian formulation

N=4,
ABJM

BDS formula

N=4,
ABJM

Dual superconformal symmetry, Yangian, null polygonal Wilson loops

N=4,
ABJM

Connections to spectral problem integrability
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Penrose’s twistors

• Penrose’s concept of twistors turns out to be an immensely powerful technique
for describing massless amplitudes.

• Idea is to coordinatize space by the bundle of light-rays passing through a
given point: i.e. by the local celestial sphere.

• Imagine two observers at different places in the galaxy. Knowledge of their
celestial spheres is enough to determine their locations:

Observer A Observer B
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Twistors

Homogeneous coordinates of CP 3:

ZI = (Z1, Z2, Z3, Z4), ZI ∼ λZI, λ ∈ C.

For a given twistor ZI, the incidence relation ( =⇒ null condition)(
Z1

Z2

)
= σµxµ

(
Z3

Z4

)
=⇒ Im (Z1Z

∗
3 + Z2Z

∗
4) = 0,

fixes xµ = (0, ~x0) + kµτ with k2 = 0, i.e. specifies a single light ray, going
through a specific point in space.

Two (or more) twistors ZI and Z ′I incident to the same point ~x0 specify two (or
more) different light rays through that point, i.e. (0, ~x0)+kµτ and (0, ~x0)+k′

µ
τ .

For fixed ~x0, the incidence relation takes CP 3 → CP 1 ∼ S2 which is nothing
but the celestial sphere at ~x0.
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Spinor-helicity variables

On-shell massless particle representations

paȧ = pµ(σµ)aȧ = λaλ̄ȧ, 〈ij〉 = εabλ
a
iλ
b
j, [ij] = εȧḃλ̄

ȧ
i λ̄
ḃ
j,

with which the Parke-Taylor formula for MHV tree-level gluon scattering am-
plitudes is expressed:

〈
−︸︷︷︸
1

, . . . ,−, +︸︷︷︸
i

,−, . . . ,−, +︸︷︷︸
j

,−, . . . , −︸︷︷︸
n

〉
∝ δ4

(
n∑
i=1

λ
a
i λ̄

ȧ
j

)
〈ij〉4

〈12〉〈23〉 . . . 〈n1〉
.

Notice that expression is “holomorphic” i.e. does not depend on λ̄. Fourier
transform w.r.t. λ̄ [Witten, 2003]∫

d
4
x

∫ ∏
i

d2λ̄i

(2π)2
exp

(
i
∑
i

µiȧλ̄
ȧ
i

)
exp

(
ixaȧ

∑
i

λ
a
i λ̄

ȧ
i

)
f({λ})

=

∫
d

4
x
∏
i

δ
2
(µiȧ + xaȧλ

a
i )︸ ︷︷ ︸

INCIDENCE RELATION

f({λ})→ define twistor ZI = (λ
a
, µȧ).

The particles (light rays) interact at a common point in space-time.
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Colour ordering, BDS formula

In large-N gauge theories we have fields φ = φaT a, where T a is (for example) a
SU(N) generator. Colour ordering refers to (e.g. for 4-particle scattering)〈

φ
a1†(p1)φ

a2†(p2)φ
a3†(p3)φ

a4†(p4)
〉

= M (p1, p2, p3, p4) Tr[T
a1T

a2T
a3T

a4] + . . .

this restricts to the (p1 + p2)2 and (p1 + p4)2, i.e. adjacent, channels.

In N = 4, d = 4 SYM, the MHV amplitudes have a conjectured all-orders form
[Bern, Dixon, Smirnov, 2005]

log
MMHV

Mtree
MHV

= −
n∑
i=1

[
1

8ε2
f

(−2)

(
λµ2ε

IR

(−si,i+1)ε

)
+

1

4ε
g

(−1)

(
λµ2ε

IR

(−si,i+1)ε

)]
+ f(λ)

R

4
+ finite.

where f (−n)(λ) in the n-th logarithmic integral of the cusp anomalous dimension
f(λ).

IR divergences have been regulated by going above four dimensions, i.e. d =
4− 2ε with ε < 0.
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Dual superconformal symmetry and Wilson loops

Alday & Maldacena taught us that at strong coupling, the dual of the amplitude
is the dual of a null-polygonal Wilson loop: i.e. a string worldsheet:

MMHV

Mtree
MHV

=

〈
1

N
TrP exp

∮
C

dτ iẋ
µ
Aµ

〉
= exp

(
−
√
λ

2π
(Area of Min. Surf.)

)

Moreover, the duality holds also at weak coupling [Brandhuber, Heslop,
Travaglini, 2007]. Reason: under T-duality pi ↔ xi+1− xi, and AdS is mapped
to itself. Amplitude is dual to high energy scattering on an IR brane à la Gross
& Mende, T-duality maps it to the null-polygon in the UV, i.e. on the boundary.

The picture which has emerged is that there is a full dual PSU(2, 2|4) symmetry
and a Yangian symmetry relating the two [Drummond, Henn, Plefka, 2009].
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Recursion relations

A(z) =

pi → p̃i = pi + z q,
pj → p̃j = pj − z q,

p̃2
i = 0 = p̃2

j ,

q2 = q · pi = q · pj = 0.

[Britto, Cachazo, Feng, Witten, 2005]

• A(z) = F (z)
G(z) i.e. amplitude is rational.

• Poles in z are simple.

• lim
z→∞

A(z) = 0.

=⇒ A(z) =
∑
pRes[A(z), zp]/(z − zp)
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Recursion relations cont’d

P =
∑
L p = −

∑
R p = no z dep.

P =
∑
L p = −

∑
R p = depends on z

A(z) =
∑

splittings

AL(zp)AR(zp)

P 2(z)
=⇒ A = A(0) =

∑
splittings

AL(zp)AR(zp)

P 2
,

AL(zp) = A
(
. . . , pi(zp), . . . , P (zp)

)
, AR(zp) = A

(
. . . , pj(zp), . . . ,−P (zp)

)
,

P
2
(zp) = 0.
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A few slides motivating amplitudes in
three-dimensions
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Three-dimensional theories: ABJM

• Propagating degrees of freedom are scalars and fermions. Results have not
been interpreted in terms of “helicity”.

• Atree
4 = δ3(P )δ6(Q)/

√
〈12〉〈23〉〈34〉〈41〉, six-partilcle result also known [Agar-

wal, Beisert, McLoughlin, 2008], [Bargheer, Loebbert, Meneghelli, 2010].

• BCFW and dual super-conformal invariance [Gang, Huang, Koh, Lee, Lip-
stein, 2011].

• Extensions to loop-level performed [Chen, Huang, 2011] [Bianchi, Leoni(2),
Mauri, Penati, Santambrogio, 2011] [Caron-Huot, Huang, 2013].

• Yangian constructed [Bargheer, Loebbert, Meneghelli, 2010].

• Grassmanian proposed [Lee, 2010].

• Light-like Wilson loop seems to match amplitudes [Henn, Plefka, Wiegandt,
2010], [Bianchi, Leoni, Mauri, Penati, Santambrogio, 2011].
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Three-dimensional theories: N = 8 SYM and ABJM

• Strong coupling IR fixed point of N = 8 SYM is believed to be ABJM.

• Can be seen using M2-to-D2 Higgsing of ABJM.

• On-shell supersymmetry algebras of the two theories (and analogues with less
SUSY) may be mapped to each other [Agarwal, DY (2012)].

• One-loop MHV vanish, one-loop non-MHV are finite [Lipstein, Mason
(2012)]. – ABJM 1-loop amps either vanish or are finite.

• N = 8 amps have dual conformal covariance [Lipstein, Mason (2012)], ABJM
amps have dual conformal invariance.

• 4-pt. 2-loop amplitudes agree in the Regge limit between the two theories
[Bianchi, Leoni (2013)].

Gauge/Gravity Duality 2013, München, July 30, 2013 13



Mass-deformed three-dimensional theories: N ≥ 4

Chern-Simons-Matter amplitudes

[Agarwal, Beisert, McLoughlin (2008)]

• Amplitudes computed at the tree and one-loop level.

• Exploited SU(2|2) algebra to relate amplitudes to one another – same con-
traints at play in N = 4 SYM spin chains!

Now we will look at massive Chern-Simons-Matter theory with N = 2, and also
at another way of introducing mass: Yang-Mills-Chern-Simons theory.
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Part II:
Mass-deformed N = 2 amplitudes in d = 3

Gauge/Gravity Duality 2013, München, July 30, 2013 15



N = 2 massive Chern-Simons-matter theory

SCSM = κ

∫
ε
µνρ

Tr(Aµ∂νAρ +
2i

3
AµAνAρ)

− 2

∫
Tr |DµΦ|2 + 2i

∫
Tr Ψ̄(Dµγ

µ
Ψ +mΨ)

−
2

κ2

∫
Tr
(
|[Φ, [Φ†,Φ]] + e

2
Φ|2
)

+
2i

κ

∫
Tr([Φ

†
,Φ][Ψ̄,Ψ] + 2[Ψ̄,Φ][Φ

†
,Ψ])

• Gauge field is non-dynamical: external states are Φ’s and Ψ’s.

• Mass is set by e: this quantity does not run, m = e2/κ.

• κ = k/(4π), k is CS level.

• Couplings in potential include Φ6, Φ4, and Φ2Ψ2.
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N = 2 Yang-Mills-Chern-Simons theory
Chern-Simons theory as a mass-term in d = 3 [Deser, Jackiw, Templeton (1982)]:

SYM =
Tr

e2

∫ [
−

1

2
FµνF

µν −DµΦD
µ
Φ + F

2
+ iΨ̄Iγ

µ
DµΨI + εABΨ̄A[Φ,ΨB]

]
,

SCS =
m

e2
Tr

∫ [
ε
µνρ
Aµ∂νAρ +

2i

3
ε
µνρ
AµAνAρ + iΨ̄IΨI + 2FΦ

]

Magic Arithmetic:

SYM
+SCS
SYMCS

=⇒ massless
+ non-dynamical

massive

• Auxilliary field F gives mass term for Φ.

• Fermion mass-term present in SCS.

• Gauge field kinetic term is Aµ
(
∂2ηµν − ∂µ∂ν −mεµνρ∂ρ

)
Aν =⇒

∆µν(p) =
1

p2(p2 +m2)

(
p

2
ηµν − pµpν + imεµνρp

ρ
)
.
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Massive spinor-helicity in d = 3

Recall: pαα̇ = λαλ̄α̇ for massless spinors in d = 4. The reason for this is that
the Lorentz group (up to signature) is SO(4) ∼ SU(2)× SU(2), hence we have
α and α̇.

• Massive momentum in d = 3 also has 3 d.o.f.

• Lorentz group is SO(3) ∼ SU(2), thus distinction between α and α̇ dissap-
pears; extra momentum-component becomes a three-dimensional mass

p
αβ

= λ
α
λ̄
β − imεαβ.

• p2 = −m2, 〈λλ̄〉 = εβαλ
αλ̄β = −2im.

• Square-bracket from four dimensions is replaced by a barred notation: 〈ij〉,
〈̄ij〉, 〈ij̄〉, and 〈̄ij̄〉.
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Trouble with external gauge fields in YMCS

In YMCS, the electric field does not commute with itself:

[Ei(x), Ej(x′)] ∼ εijδ2(x− x′)

A usual mode expansion like

Aaµ(x) =

∫
d2p

(2π)2

1√
2p0

(
εµ(p)aa†1 (p)eip·x + ε∗µ(p)aa1(p)e−ip·x

)
does not fit the bill! [Haller, Lim-Lombridas, (1994)].

We learned this the hard way:

• YMCS amplitudes with external gauge fields computed using a standard
mode expansion do not respect the SUSY algebra!
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Two different theories, two different SUSY algebras

• CSM theory: Φ = Φ1 + iΦ2, Ψ = Ψ1 + iΨ2, SO(2) R-symmetry

{QβJ , QαI} =
1

2

(
PαβδIJ +mεβαεJIR

)

• YMCS theory: Real scalar Φ ∼ Φ2, gauge field d.o.f. A ∼ Φ1: no R-symmetry
although Ψ1 and Ψ2 do enjoy SO(2)

{QβJ , QαI} =
1

2
PαβδIJ
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On-shell SUSY algebras
Solutions to the massive Dirac equation ( 6 p λ̄ = imλ̄, 6 p λ = −imλ):

λ̄(p) =
−1√
p0 − p1

(
p2 + im
p1 − p0

)
, λ(p) =

1√
p0 − p1

(
p2 − im
p1 − p0

)
.

CSM:

QI|Φ1〉 = −
1

2
λ̄|ΨI〉,

QI|Φ2〉 = −
1

2
λ̄ε

IJ|ΨJ〉,

QI|ΨJ〉 =
1

2
δIJλ|Φ1〉+

1

2
ε
IJ
λ|Φ2〉.

YMCS:

QI|A〉 =
1

2
λ|ΨI〉,

QI|Φ〉 = −
1

2
λ̄ε

IJ|ΨJ〉,

QI|ΨJ〉 = −
1

2
δIJλ̄|A〉+

1

2
ε
IJ
λ|Φ〉.

CSM theory has SO(2) R-symmetry: a± ≡ (Φ1 ± iΦ2)/
√

2, χ± = (Ψ1 ± iΨ2)/
√

2

Q+|a+〉 = −
1
√

2
λ̄|χ+〉, Q+|χ−〉 =

1
√

2
λ|a−〉,

Q−|a−〉 = −
1
√

2
λ̄|χ−〉, Q−|χ+〉 =

1
√

2
λ|a+〉,

Q−|a+〉 = Q+|χ+〉 = Q+|a−〉 = Q−|χ−〉 = 0.
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CSM four-point amplitudes

• SUSY algebra is a powerful constraint:

0 = Q−〈χ+a+a−a−〉 = λ1〈a+a+a−a−〉+ λ̄3〈χ+a+χ−a−〉+ λ̄4〈χ+a+a−χ−〉
=⇒ 〈13̄〉〈χ+a+χ−a−〉 = −〈14̄〉〈χ+a+a−χ−〉

• Including crossing relations, tree-level four-point amplitudes all related to
one single amplitude.

• Can be packaged into two superamplitudes:

AΦΦΨΨ =
〈24〉
〈3̄2〉

δ
3
(P )δ

2
(Q), AΦΨΦΨ =

〈41〉 〈41̄〉 − 〈43〉 〈43̄〉
〈12̄〉 〈41̄〉

δ
3
(P )δ

2
(Q),

P
αβ

=

4∑
i=1

λ
(α
i λ̄

β)
i , Q

α
=

4∑
i=1

λ
α
i η̄i + λ̄

α
i ηi, δ

2
(Q) = Q

α
Qα,

Φ = a+ + η̄χ+, Ψ = χ− + ηa−.
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YMCS four-point amplitudes

• SUSY algebra less constraining: three-amplitude relations instead of two-
amplitude relations:

Q2〈Ψ1Ψ2AΨ1〉 = 0

= −λ1〈ΦΨ2AΨ1〉 − λ̄2〈Ψ1AAΨ1〉+ λ3〈Ψ1Ψ2Ψ2Ψ1〉 − λ4〈Ψ1Ψ2AΦ〉

• Can use the SUSY algebra to obtain all four-point amplitudes with external
gauge fields from those without.

• Four-fermion amplitudes:

〈χ+χ+χ−χ−〉 = 〈χ−χ−χ+χ+〉 = −
2〈34〉
u+m2

[
〈12〉+ im

〈42〉
〈41̄〉

]
,

〈χ+χ−χ−χ+〉 = 〈χ−χ+χ+χ−〉 =
2〈41〉
s+m2

[
〈23〉+ im

〈13〉
〈12̄〉

]
.
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YMCS four-point amplitudes cont’d

Example of a nastier-looking amplitude:

〈χ+AAχ−〉 = −
〈41〉〈4̄1̄〉
〈2̄4〉〈4̄3̄〉

〈Ψ2Ψ2Ψ1Ψ1〉+
〈43〉
〈2̄4〉
〈Ψ1Ψ2Ψ2Ψ1〉 −

〈41〉〈24̄〉
〈2̄4〉〈4̄3̄〉

〈ΦΦχ+χ−〉

=
1

〈2̄1̄〉

[
−2
〈41〉〈23〉
〈3̄1〉

(s+ 2m
2
) + 2

〈12〉〈34〉
〈3̄1〉

(s+ 4m
2
)

− im
(
〈32〉〈34〉 − 2

〈42〉〈34〉
〈3̄1〉〈41̄〉

(s+ 4m
2
)

)]
1

u+m2

+
1

〈4̄3̄〉

[
〈12〉〈34〉
〈2̄4〉

(s− u)− 2
〈23〉〈41〉
〈2̄4〉

(t+ s)− 2
〈23〉〈41̄〉〈13̄〉
〈1̄2̄〉〈3̄4〉

(s+ 2m
2
)

+ 2im
〈13〉〈14〉
〈2̄4〉〈12̄〉

(t+ s) + im
〈23〉
〈1̄2̄〉

(u− t)
]

1

s+m2
.
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BCFW for massless lines in d = 3

Recall: we had a linear shift in d = 4

pi → pi + zq, pj → pj − zq

this will not work in d = 3

q = αpi + β pj + γ pi ∧ pj

requiring p2
i = p2

j = 0 means requiring q · pi = q · pj = q2 = 0 but then
α = β = γ = 0.

Resolution: Use a non-linear shift [Gang, Huang, Koh, Lee, Lipstein (2011)]

pi
j
→ 1

2
(pi + pj)± z2q ± z−2q̃, q + q̃ =

1

2
(pi − pj)

then q2 = q̃2 = q · (pi+ pj) = q̃ · (pi+ pj) = 0 and 2 q · q̃ = −pi · pj can be solved!

N.B. undeformed case is now z = 1.
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BCFW for massive lines in d = 3

In terms of spinor variables the BCFW shift is expressed as(
λi
λj

)
→
(

1
2

(
z + z−1

)
i
2

(
z − z−1

)
− i

2

(
z − z−1

)
1
2

(
z + z−1

) )( λi
λj

)
.

This can be extended to the massive case just by doing the same to the λ̄’s:(
λ̄i
λ̄j

)
→
(

1
2

(
z + z−1

)
i
2

(
z − z−1

)
− i

2

(
z − z−1

)
1
2

(
z + z−1

) )( λ̄i
λ̄j

)
.

We then can express the recursion relation as

A(z = 1) = − 1

2πi

∑
f,j

∮
zf,j

AL(z)AR(z)

p̂f(z)2 +m2

1

z − 1
,

where f labels splittings, p̂f(z)2 +m2 = afz
−2 + bf + cfz

2, and j labels its four
roots.
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Applying BCFW to CSM and YMCS

• The question of applicability has to do with the large-z behaviour of the
amplitudes.

• We need A(z)→ 0 when z →∞.

• The YMCS component amplitudes do not have this property.

• The CSM component amplitudes don’t either, but the superamplitude does.

• Thus the CSM theory seems amenable to BCFW recursion.
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Future directions

• Compute 6-pt. amplitudes in CSM and see if BCFW gives the same result.

• Explore the theories at loop-level.

• Does there exist a superamplitude expression for YMCS?

• Understand how to compute amplitudes with external gauge fields in YMCS.
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Future directions

• Compute 6-pt. amplitudes in CSM and see if BCFW gives the same result.

• Explore the theories at loop-level.

• Does there exist a superamplitude expression for YMCS?

• Understand how to compute amplitudes with external gauge fields in YMCS.

Thanks!
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