Scattering Amplitudes of Massive $\mathcal{N}=2$ Gauge Theories in Three Dimensions

Donovan Young

Abhishek Agarwal, Arthur Lipstein, DY, arXiv:1302.5288

Outline

I. Invitation to amplitudeology

- Twistors
- BDS
- BCFW recursion relations

II. Mass-deformed $\mathcal{N}=2$ amplitudes in d=3

- Mass-deformed Chern-Simons theory (CSM)
- Yang-Mills-Chern-Simons theory (YMCS)
- Massive spinor-helicity in d=3
- Trouble with YMCS external gauge fields
- On-shell SUSY algebras
- Four-point amplitudes: superamplitude for CSM
- Massive BCFW in d=3

III. Conclusions and looking forward

Part I: Amplitudeology

Amplitudeology

- Parke-Taylor formula: massive simplification of amplitudes in "spinor-helicity" variables; Witten's twistor string theory
- ullet BCFW recursion: n-point amplitudes from n-1-point amplitudes
- Unitarity methods to construct loop-level amplitudes
- BCJ relations: duality between colour and kinematics
- \bullet KLT relations: gauge-theory amplitudes $^2=$ gravity amplitudes
- Grassmannian formulation

 $\mathcal{N}{=}4,$ ABJM

BDS formula

 $\mathcal{N}{=}4,$ ABJM

Dual superconformal symmetry, Yangian, null polygonal Wilson loops

 $\mathcal{N}{=}4,$ ABJM

Connections to spectral problem integrability

Penrose's twistors

- Penrose's concept of twistors turns out to be an immensely powerful technique for describing massless amplitudes.
- Idea is to coordinatize space by the bundle of light-rays passing through a given point: i.e. by the local celestial sphere.
- Imagine two observers at different places in the galaxy. Knowledge of their celestial spheres is enough to determine their locations:

Observer A

Observer B

Twistors

Homogeneous coordinates of $\mathbb{C}P^3$:

$$Z_I = (Z_1, Z_2, Z_3, Z_4), \quad Z_I \sim \lambda Z_I, \quad \lambda \in \mathbb{C}.$$

For a given twistor Z_I , the incidence relation (\Longrightarrow null condition)

$$\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \sigma^{\mu} x_{\mu} \begin{pmatrix} Z_3 \\ Z_4 \end{pmatrix} \implies \operatorname{Im} (Z_1 Z_3^* + Z_2 Z_4^*) = 0,$$

fixes $x^{\mu} = (0, \vec{x}_0) + k^{\mu}\tau$ with $k^2 = 0$, i.e. specifies a single light ray, going through a specific point in space.

Two (or more) twistors Z_I and Z_I' incident to the same point \vec{x}_0 specify two (or more) different light rays through that point, i.e. $(0, \vec{x}_0) + k^{\mu} \tau$ and $(0, \vec{x}_0) + k'^{\mu} \tau$.

For fixed \vec{x}_0 , the incidence relation takes $CP^3 \to CP^1 \sim S^2$ which is nothing but the celestial sphere at \vec{x}_0 .

Spinor-helicity variables

On-shell massless particle representations

$$p^{a\dot{a}} = p_{\mu}(\sigma^{\mu})^{a\dot{a}} = \lambda^{a}\bar{\lambda}^{\dot{a}}, \quad \langle ij \rangle = \epsilon_{ab}\lambda_{i}^{a}\lambda_{j}^{b}, \quad [ij] = \epsilon_{\dot{a}\dot{b}}\bar{\lambda}_{i}^{\dot{a}}\bar{\lambda}_{j}^{\dot{b}},$$

with which the Parke-Taylor formula for MHV tree-level gluon scattering amplitudes is expressed:

$$\left\langle \underbrace{\hspace{0.5cm}}_{1}, \ldots, -, \underbrace{\hspace{0.5cm}}_{i}, -, \ldots, -, \underbrace{\hspace{0.5cm}}_{j}, -, \ldots, \underbrace{\hspace{0.5cm}}_{n} \right
angle \propto \delta^{4} \left(\sum_{i=1}^{n} \lambda_{i}^{a} \bar{\lambda}_{j}^{\dot{a}} \right) \frac{\langle ij \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \ldots \langle n1 \rangle}.$$

Notice that expression is "holomorphic" i.e. does not depend on λ . Fourier transform w.r.t. $\bar{\lambda}$ [Witten, 2003]

$$\int d^4x \int \prod_i \frac{d^2\bar{\lambda}_i}{(2\pi)^2} \exp\left(i\sum_i \mu_{i\dot{a}}\bar{\lambda}_i^{\dot{a}}\right) \exp\left(ix_{a\dot{a}}\sum_i \lambda_i^a\bar{\lambda}_i^{\dot{a}}\right) f(\{\lambda\})$$

$$= \int d^4x \prod_i \delta^2 \left(\mu_{i\dot{a}} + x_{a\dot{a}}\lambda_i^a\right) f(\{\lambda\}) \to \text{define twistor } Z_I = (\lambda^a, \ \mu_{\dot{a}}).$$
INCIDENCE RELATION

The particles (light rays) interact at a common point in space-time.

Colour ordering, BDS formula

In large-N gauge theories we have fields $\phi = \phi^a T^a$, where T^a is (for example) a SU(N) generator. Colour ordering refers to (e.g. for 4-particle scattering)

$$\left\langle \phi^{a_1\dagger}(p_1) \, \phi^{a_2\dagger}(p_2) \, \phi^{a_3\dagger}(p_3) \, \phi^{a_4\dagger}(p_4) \, \right\rangle = \, \mathcal{M}\left(p_1, p_2, p_3, p_4\right) \, \text{Tr}[T^{a_1} T^{a_2} T^{a_3} T^{a_4}] + \dots$$

this restricts to the $(p_1 + p_2)^2$ and $(p_1 + p_4)^2$, i.e. adjacent, channels.

In $\mathcal{N}=4,\,d=4$ SYM, the MHV amplitudes have a conjectured all-orders form [Bern, Dixon, Smirnov, 2005]

$$\log \frac{\mathcal{M}_{\text{MHV}}}{\mathcal{M}_{\text{MHV}}^{\text{tree}}} = -\sum_{i=1}^{n} \left[\frac{1}{8\epsilon^2} f^{(-2)} \left(\frac{\lambda \mu_{IR}^{2\epsilon}}{(-s_{i,i+1})^{\epsilon}} \right) + \frac{1}{4\epsilon} g^{(-1)} \left(\frac{\lambda \mu_{IR}^{2\epsilon}}{(-s_{i,i+1})^{\epsilon}} \right) \right] + f(\lambda) \frac{R}{4} + \text{finite.}$$

where $f^{(-n)}(\lambda)$ in the *n*-th logarithmic integral of the cusp anomalous dimension $f(\lambda)$.

IR divergences have been regulated by going above four dimensions, i.e. $d = 4 - 2\epsilon$ with $\epsilon < 0$.

Dual superconformal symmetry and Wilson loops

Alday & Maldacena taught us that at strong coupling, the dual of the amplitude is the dual of a null-polygonal Wilson loop: i.e. a string worldsheet:

Moreover, the duality holds also at weak coupling [Brandhuber, Heslop, Travaglini, 2007]. Reason: under T-duality $p_i \leftrightarrow x_{i+1} - x_i$, and AdS is mapped to *itself*. Amplitude is dual to high energy scattering on an IR brane à la Gross & Mende, T-duality maps it to the null-polygon in the UV, i.e. on the boundary.

The picture which has emerged is that there is a full dual PSU(2,2|4) symmetry and a Yangian symmetry relating the two [Drummond, Henn, Plefka, 2009].

Recursion relations

$$p_{i} \rightarrow \tilde{p}_{i} = p_{i} + z q,$$

$$p_{j} \rightarrow \tilde{p}_{j} = p_{j} - z q,$$

$$\tilde{p}_{i}^{2} = 0 = \tilde{p}_{j}^{2},$$

$$q^{2} = q \cdot p_{i} = q \cdot p_{j} = 0.$$

[Britto, Cachazo, Feng, Witten, 2005]

- $A(z) = \frac{F(z)}{G(z)}$ i.e. amplitude is rational.
- Poles in z are simple.
- $\lim_{z \to \infty} \mathcal{A}(z) = 0.$

$$\implies \mathcal{A}(z) = \sum_{p} \text{Res}[\mathcal{A}(z), z_p]/(z - z_p)$$

Recursion relations cont'd

$$P = \sum_{L} p = -\sum_{R} p = \text{no } z \text{ dep.}$$

$$P = \sum_{L} p = -\sum_{R} p = \text{depends on } z$$

$$\mathcal{A}(z) = \sum_{\text{splittings}} \frac{\mathcal{A}_L(z_p)\mathcal{A}_R(z_p)}{P^2(z)} \implies \mathcal{A} = \mathcal{A}(0) = \sum_{\text{splittings}} \frac{\mathcal{A}_L(z_p)\mathcal{A}_R(z_p)}{P^2},$$

$$\mathcal{A}_L(z_p) = \mathcal{A}(\ldots, p_i(z_p), \ldots, P(z_p)), \quad \mathcal{A}_R(z_p) = \mathcal{A}(\ldots, p_j(z_p), \ldots, -P(z_p)),$$

$$P^2(z_p) = 0.$$

A few slides motivating amplitudes in three-dimensions

Three-dimensional theories: ABJM

- Propagating degrees of freedom are scalars and fermions. Results have not been interpreted in terms of "helicity".
- $\mathcal{A}_4^{\text{tree}} = \delta^3(P)\delta^6(Q)/\sqrt{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle}$, six-particle result also known [Agarwal, Beisert, McLoughlin, 2008], [Bargheer, Loebbert, Meneghelli, 2010].
- BCFW and dual super-conformal invariance [Gang, Huang, Koh, Lee, Lipstein, 2011].
- Extensions to loop-level performed [Chen, Huang, 2011] [Bianchi, Leoni⁽²⁾, Mauri, Penati, Santambrogio, 2011] [Caron-Huot, Huang, 2013].
- Yangian constructed [Bargheer, Loebbert, Meneghelli, 2010].
- Grassmanian proposed [Lee, 2010].
- Light-like Wilson loop seems to match amplitudes [Henn, Plefka, Wiegandt, 2010], [Bianchi, Leoni, Mauri, Penati, Santambrogio, 2011].

Three-dimensional theories: $\mathcal{N}=8$ SYM and ABJM

- Strong coupling IR fixed point of $\mathcal{N} = 8$ SYM is believed to be ABJM.
- Can be seen using M2-to-D2 Higgsing of ABJM.
- On-shell supersymmetry algebras of the two theories (and analogues with less SUSY) may be mapped to each other [Agarwal, DY (2012)].
- One-loop MHV vanish, one-loop non-MHV are finite [Lipstein, Mason (2012)]. ABJM 1-loop amps either vanish or are finite.
- $\mathcal{N} = 8$ amps have dual conformal covariance [Lipstein, Mason (2012)], ABJM amps have dual conformal invariance.
- 4-pt. 2-loop amplitudes agree in the Regge limit between the two theories [Bianchi, Leoni (2013)].

Mass-deformed three-dimensional theories: $\mathcal{N} \geq 4$ Chern-Simons-Matter amplitudes

[Agarwal, Beisert, McLoughlin (2008)]

- Amplitudes computed at the tree and one-loop level.
- Exploited SU(2|2) algebra to relate amplitudes to one another same contraints at play in $\mathcal{N}=4$ SYM spin chains!

Now we will look at massive Chern-Simons-Matter theory with $\mathcal{N}=2$, and also at another way of introducing mass: Yang-Mills-Chern-Simons theory.

Part II: Mass-deformed $\mathcal{N}=2$ amplitudes in d=3

$\mathcal{N}=2$ massive Chern-Simons-matter theory

$$S_{CSM} = \kappa \int \epsilon^{\mu\nu\rho} \operatorname{Tr}(A_{\mu}\partial_{\nu}A_{\rho} + \frac{2i}{3}A_{\mu}A_{\nu}A_{\rho})$$

$$-2 \int \operatorname{Tr}|D_{\mu}\Phi|^{2} + 2i \int \operatorname{Tr}\bar{\Psi}(D_{\mu}\gamma^{\mu}\Psi + m\Psi)$$

$$-\frac{2}{\kappa^{2}} \int \operatorname{Tr}\left(|[\Phi, [\Phi^{\dagger}, \Phi]] + e^{2}\Phi|^{2}\right) + \frac{2i}{\kappa} \int \operatorname{Tr}([\Phi^{\dagger}, \Phi][\bar{\Psi}, \Psi] + 2[\bar{\Psi}, \Phi][\Phi^{\dagger}, \Psi])$$

- Gauge field is non-dynamical: external states are Φ 's and Ψ 's.
- Mass is set by e: this quantity does not run, $m = e^2/\kappa$.
- $\kappa = k/(4\pi)$, k is CS level.
- Couplings in potential include Φ^6 , Φ^4 , and $\Phi^2\Psi^2$.

$\mathcal{N}=2$ Yang-Mills-Chern-Simons theory

Chern-Simons theory as a mass-term in d = 3 [Deser, Jackiw, Templeton (1982)]:

$$S_{YM} = \frac{\text{Tr}}{e^2} \int \left[-\frac{1}{2} F_{\mu\nu} F^{\mu\nu} - D_{\mu} \Phi D^{\mu} \Phi + \mathbf{F}^2 + i \bar{\Psi}_I \gamma^{\mu} D_{\mu} \Psi_I + \epsilon_{AB} \bar{\Psi}_A [\Phi, \Psi_B] \right],$$

$$S_{CS} = \frac{m}{e^2} \text{Tr} \int \left[\epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} + \frac{2i}{3} \epsilon^{\mu\nu\rho} A_{\mu} A_{\nu} A_{\rho} + i \bar{\Psi}_I \Psi_I + 2 \mathbf{F} \Phi \right]$$

Magic Arithmetic:

$$\begin{array}{ccc}
S_{YM} & & \text{massless} \\
+S_{CS} & & + \text{non-dynamical} \\
\hline
S_{YMCS} & & & \text{massive}
\end{array}$$

- Auxilliary field F gives mass term for Φ .
- Fermion mass-term present in S_{CS} .
- Gauge field kinetic term is $A^{\mu} \left(\partial^2 \eta_{\mu\nu} \partial_{\mu} \partial_{\nu} m \epsilon_{\mu\nu\rho} \partial^{\rho} \right) A^{\nu} \implies$

$$\Delta_{\mu\nu}(p) = rac{1}{p^2(p^2+m^2)} \left(p^2\eta_{\mu\nu} - p_{\mu}p_{\nu} + im\epsilon_{\mu\nu\rho}p^{
ho}\right).$$

Massive spinor-helicity in d=3

Recall: $p^{\alpha\dot{\alpha}} = \lambda^{\alpha}\bar{\lambda}^{\dot{\alpha}}$ for massless spinors in d = 4. The reason for this is that the Lorentz group (up to signature) is $SO(4) \sim SU(2) \times SU(2)$, hence we have α and $\dot{\alpha}$.

- Massive momentum in d = 3 also has 3 d.o.f.
- Lorentz group is $SO(3) \sim SU(2)$, thus distinction between α and $\dot{\alpha}$ dissappears; extra momentum-component becomes a three-dimensional mass

$$p^{\alpha\beta} = \lambda^{\alpha} \bar{\lambda}^{\beta} - im \epsilon^{\alpha\beta}.$$

- $p^2 = -m^2$, $\langle \lambda \bar{\lambda} \rangle = \epsilon_{\beta \alpha} \lambda^{\alpha} \bar{\lambda}^{\beta} = -2im$.
- Square-bracket from four dimensions is replaced by a barred notation: $\langle ij \rangle$, $\langle \bar{i}j \rangle$, $\langle i\bar{j} \rangle$, and $\langle \bar{i}j \rangle$.

Trouble with external gauge fields in YMCS

In YMCS, the electric field does not commute with itself:

$$[E^{i}(x), E^{j}(x')] \sim \epsilon^{ij} \delta^{2}(x - x')$$

A usual mode expansion like

$$A^{a}_{\mu}(x) = \int \frac{d^{2}p}{(2\pi)^{2}} \frac{1}{\sqrt{2p^{0}}} \left(\epsilon_{\mu}(p) a_{1}^{a\dagger}(p) e^{ip \cdot x} + \epsilon_{\mu}^{*}(p) a_{1}^{a}(p) e^{-ip \cdot x} \right)$$

does not fit the bill! [Haller, Lim-Lombridas, (1994)].

We learned this the hard way:

• YMCS amplitudes with external gauge fields computed using a standard mode expansion do not respect the SUSY algebra!

Two different theories, two different SUSY algebras

• CSM theory: $\Phi = \Phi_1 + i\Phi_2$, $\Psi = \Psi_1 + i\Psi_2$, SO(2) R-symmetry

$$\{Q^{\beta J}, Q^{\alpha I}\} = \frac{1}{2} \left(P^{\alpha \beta} \delta^{IJ} + m \epsilon^{\beta \alpha} \epsilon^{JI} R \right)$$

• YMCS theory: Real scalar $\Phi \sim \Phi_2$, gauge field d.o.f. $A \sim \Phi_1$: no R-symmetry although Ψ_1 and Ψ_2 do enjoy SO(2)

$$\{Q^{\beta J}, Q^{\alpha I}\} = \frac{1}{2} P^{\alpha \beta} \delta^{IJ}$$

On-shell SUSY algebras

Solutions to the massive Dirac equation ($p\bar{\lambda} = im\bar{\lambda}$, $p\lambda = -im\lambda$):

$$\bar{\lambda}(p) = \frac{-1}{\sqrt{p_0 - p_1}} \begin{pmatrix} p_2 + im \\ p_1 - p_0 \end{pmatrix}, \quad \lambda(p) = \frac{1}{\sqrt{p_0 - p_1}} \begin{pmatrix} p_2 - im \\ p_1 - p_0 \end{pmatrix}.$$

CSM:

YMCS:

$$Q_{I}|\Phi_{1}\rangle = -\frac{1}{2}\bar{\lambda}|\Psi_{I}\rangle,$$

$$Q_{I}|A\rangle = \frac{1}{2}\lambda|\Psi_{I}\rangle,$$

$$Q_{I}|\Phi_{2}\rangle = -\frac{1}{2}\bar{\lambda}\epsilon^{IJ}|\Psi_{J}\rangle,$$

$$Q_{I}|\Phi\rangle = -\frac{1}{2}\bar{\lambda}\epsilon^{IJ}|\Psi_{J}\rangle,$$

$$Q_{I}|\Psi\rangle = -\frac{1}{2}\bar{\lambda}\epsilon^{IJ}|\Psi\rangle,$$

$$Q_{I}|\Psi\rangle = -\frac{1}{2}\bar{\lambda}\epsilon^{IJ}|\Psi\rangle,$$

$$Q_{I}|\Psi\rangle = -\frac{1}{2}\delta_{IJ}\bar{\lambda}|A\rangle + \frac{1}{2}\epsilon^{IJ}\lambda|\Phi\rangle.$$

CSM theory has SO(2) R-symmetry: $a_{\pm} \equiv (\Phi_1 \pm i\Phi_2)/\sqrt{2}, \chi_{\pm} = (\Psi_1 \pm i\Psi_2)/\sqrt{2}$

$$Q_{+}|a_{+}\rangle = -\frac{1}{\sqrt{2}}\bar{\lambda}|\chi_{+}\rangle, \quad Q_{+}|\chi_{-}\rangle = \frac{1}{\sqrt{2}}\lambda|a_{-}\rangle,$$

$$Q_{-}|a_{-}\rangle = -\frac{1}{\sqrt{2}}\bar{\lambda}|\chi_{-}\rangle, \quad Q_{-}|\chi_{+}\rangle = \frac{1}{\sqrt{2}}\lambda|a_{+}\rangle,$$

$$Q_{-}|a_{+}\rangle = Q_{+}|\chi_{+}\rangle = Q_{+}|a_{-}\rangle = Q_{-}|\chi_{-}\rangle = 0.$$

CSM four-point amplitudes

• SUSY algebra is a powerful constraint:

$$0 = Q_{-}\langle \chi_{+}a_{+}a_{-}a_{-}\rangle = \lambda_{1}\langle a_{+}a_{+}a_{-}a_{-}\rangle + \bar{\lambda}_{3}\langle \chi_{+}a_{+}\chi_{-}a_{-}\rangle + \bar{\lambda}_{4}\langle \chi_{+}a_{+}a_{-}\chi_{-}\rangle$$

$$\implies \langle 1\bar{3}\rangle\langle \chi_{+}a_{+}\chi_{-}a_{-}\rangle = -\langle 1\bar{4}\rangle\langle \chi_{+}a_{+}a_{-}\chi_{-}\rangle$$

- Including crossing relations, tree-level four-point amplitudes all related to one single amplitude.
- Can be packaged into two superamplitudes:

$$\mathcal{A}_{\Phi\Phi\Psi\Psi} = \frac{\langle 24 \rangle}{\langle \bar{3}2 \rangle} \delta^{3}(P) \delta^{2}(Q), \quad \mathcal{A}_{\Phi\Psi\Phi\Psi} = \frac{\langle 41 \rangle \langle 4\bar{1} \rangle - \langle 43 \rangle \langle 4\bar{3} \rangle}{\langle 1\bar{2} \rangle \langle 4\bar{1} \rangle} \delta^{3}(P) \delta^{2}(Q),$$

$$P^{\alpha\beta} = \sum_{i=1}^{4} \lambda_{i}^{(\alpha} \bar{\lambda}_{i}^{\beta)}, \quad Q^{\alpha} = \sum_{i=1}^{4} \lambda_{i}^{\alpha} \bar{\eta}_{i} + \bar{\lambda}_{i}^{\alpha} \eta_{i}, \quad \delta^{2}(Q) = Q^{\alpha} Q_{\alpha},$$

$$\Phi = a_{+} + \bar{\eta} \chi_{+}, \quad \Psi = \chi_{-} + \eta a_{-}.$$

YMCS four-point amplitudes

• SUSY algebra less constraining: three-amplitude relations instead of two-amplitude relations:

$$Q_2 \langle \Psi_1 \Psi_2 A \Psi_1 \rangle = 0$$

= $-\lambda_1 \langle \Phi \Psi_2 A \Psi_1 \rangle - \bar{\lambda}_2 \langle \Psi_1 A A \Psi_1 \rangle + \lambda_3 \langle \Psi_1 \Psi_2 \Psi_2 \Psi_1 \rangle - \lambda_4 \langle \Psi_1 \Psi_2 A \Phi \rangle$

- Can use the SUSY algebra to obtain all four-point amplitudes with external gauge fields from those without.
- Four-fermion amplitudes:

$$\langle \chi_{+} \chi_{+} \chi_{-} \chi_{-} \rangle = \langle \chi_{-} \chi_{+} \chi_{+} \rangle = -\frac{2\langle 34 \rangle}{u + m^{2}} \left[\langle 12 \rangle + im \frac{\langle 42 \rangle}{\langle 4\bar{1} \rangle} \right],$$
$$\langle \chi_{+} \chi_{-} \chi_{-} \chi_{+} \rangle = \langle \chi_{-} \chi_{+} \chi_{+} \chi_{-} \rangle = \frac{2\langle 41 \rangle}{s + m^{2}} \left[\langle 23 \rangle + im \frac{\langle 13 \rangle}{\langle 1\bar{2} \rangle} \right].$$

YMCS four-point amplitudes cont'd

Example of a nastier-looking amplitude:

$$\begin{split} \langle \chi_{+}AA\chi_{-} \rangle &= -\frac{\langle 41 \rangle \langle \bar{4}\bar{1} \rangle}{\langle \bar{2}4 \rangle \langle \bar{4}\bar{3} \rangle} \langle \Psi_{2}\Psi_{2}\Psi_{1}\Psi_{1} \rangle + \frac{\langle 43 \rangle}{\langle \bar{2}4 \rangle} \langle \Psi_{1}\Psi_{2}\Psi_{2}\Psi_{1} \rangle - \frac{\langle 41 \rangle \langle 2\bar{4} \rangle}{\langle \bar{2}4 \rangle \langle \bar{4}\bar{3} \rangle} \langle \Phi \Phi \chi_{+} \chi_{-} \rangle \\ &= \frac{1}{\langle \bar{2}\bar{1} \rangle} \Bigg[-2\frac{\langle 41 \rangle \langle 23 \rangle}{\langle \bar{3}1 \rangle} (s+2m^{2}) + 2\frac{\langle 12 \rangle \langle 34 \rangle}{\langle \bar{3}1 \rangle} (s+4m^{2}) \\ &- im \left(\langle 32 \rangle \langle 34 \rangle - 2\frac{\langle 42 \rangle \langle 34 \rangle}{\langle \bar{3}1 \rangle \langle 4\bar{1} \rangle} (s+4m^{2}) \right) \Bigg] \frac{1}{u+m^{2}} \\ &+ \frac{1}{\langle \bar{4}\bar{3} \rangle} \Bigg[\frac{\langle 12 \rangle \langle 34 \rangle}{\langle \bar{2}4 \rangle} (s-u) - 2\frac{\langle 23 \rangle \langle 41 \rangle}{\langle \bar{2}4 \rangle} (t+s) - 2\frac{\langle 23 \rangle \langle 4\bar{1} \rangle \langle 1\bar{3} \rangle}{\langle \bar{1}\bar{2} \rangle \langle \bar{3}4 \rangle} (s+2m^{2}) \\ &+ 2im \frac{\langle 13 \rangle \langle 14 \rangle}{\langle \bar{2}4 \rangle \langle 1\bar{2} \rangle} (t+s) + im \frac{\langle 23 \rangle}{\langle \bar{1}\bar{2} \rangle} (u-t) \Bigg] \frac{1}{s+m^{2}}. \end{split}$$

BCFW for massless lines in d = 3

Recall: we had a linear shift in d=4

$$p_i \to p_i + zq, \qquad p_j \to p_j - zq$$

this will **not** work in d=3

$$q = \alpha p_i + \beta p_j + \gamma p_i \wedge p_j$$

requiring $p_i^2 = p_j^2 = 0$ means requiring $q \cdot p_i = q \cdot p_j = q^2 = 0$ but then $\alpha = \beta = \gamma = 0$.

Resolution: Use a non-linear shift [Gang, Huang, Koh, Lee, Lipstein (2011)]

$$p_i \to \frac{1}{2}(p_i + p_j) \pm z^2 q \pm z^{-2}\tilde{q}, \qquad q + \tilde{q} = \frac{1}{2}(p_i - p_j)$$

then $q^2 = \tilde{q}^2 = q \cdot (p_i + p_j) = \tilde{q} \cdot (p_i + p_j) = 0$ and $2q \cdot \tilde{q} = -p_i \cdot p_j$ can be solved!

N.B. undeformed case is now z = 1.

BCFW for massive lines in d = 3

In terms of spinor variables the BCFW shift is expressed as

$$\left(egin{array}{c} \lambda_i \ \lambda_j \end{array}
ight)
ightarrow \left(egin{array}{c} rac{1}{2} \left(z+z^{-1}
ight) & rac{i}{2} \left(z-z^{-1}
ight) \ -rac{i}{2} \left(z-z^{-1}
ight) & rac{1}{2} \left(z+z^{-1}
ight) \end{array}
ight) \left(egin{array}{c} \lambda_i \ \lambda_j \end{array}
ight).$$

This can be extended to the massive case just by doing the same to the $\bar{\lambda}$'s:

$$\left(\begin{array}{c} \bar{\lambda}_i \ \bar{\lambda}_j \end{array}
ight)
ightarrow \left(\begin{array}{c} rac{1}{2} \left(z+z^{-1}
ight) & rac{i}{2} \left(z-z^{-1}
ight) \ -rac{i}{2} \left(z-z^{-1}
ight) & rac{1}{2} \left(z+z^{-1}
ight) \end{array}
ight) \left(\begin{array}{c} \bar{\lambda}_i \ \bar{\lambda}_j \end{array}
ight).$$

We then can express the recursion relation as

$$A(z=1) = -\frac{1}{2\pi i} \sum_{f,j} \oint_{z_{f,j}} \frac{A_L(z)A_R(z)}{\hat{p}_f(z)^2 + m^2} \frac{1}{z-1},$$

where f labels splittings, $\hat{p}_f(z)^2 + m^2 = a_f z^{-2} + b_f + c_f z^2$, and j labels its four roots.

Applying BCFW to CSM and YMCS

- \bullet The question of applicability has to do with the large-z behaviour of the amplitudes.
- We need $A(z) \to 0$ when $z \to \infty$.
- The YMCS component amplitudes do not have this property.
- The CSM component amplitudes don't either, but the superamplitude does.
- Thus the CSM theory seems amenable to BCFW recursion.

Future directions

- Compute 6-pt. amplitudes in CSM and see if BCFW gives the same result.
- Explore the theories at loop-level.
- Does there exist a superamplitude expression for YMCS?
- Understand how to compute amplitudes with external gauge fields in YMCS.

Future directions

- Compute 6-pt. amplitudes in CSM and see if BCFW gives the same result.
- Explore the theories at loop-level.
- Does there exist a superamplitude expression for YMCS?
- Understand how to compute amplitudes with external gauge fields in YMCS.

Thanks!