Holographic thermalization at intermediate coupling

Aleksi Vuorinen

Bielefeld University

Gauge/Gravity Duality 2013
MPI Munich, 29.7.2013

R. Baier, S. Stricker, O. Taanila, AV, 1205.2998 (JHEP), 1207.1116 (PRD)
D. Steineder, S. Stricker, AV, 1209.0291 (PRL), 1304.3404 (JHEP)
S. Stricker, 1307.2736
Table of contents

1 Thermalization in heavy ion collisions
 • Early dynamics of a heavy ion collision
 • Thermalization at weak coupling
 • Thermalization at strong(er) coupling

2 Holographic Green’s functions at finite coupling
 • Green’s functions as a probe of thermalization
 • Some computational details

3 Results
 • Quasinormal modes at finite coupling
 • Off-equilibrium spectral densities

4 Conclusions
Thermalization in heavy ion collisions

1. Early dynamics of a heavy ion collision
2. Thermalization at weak coupling
3. Thermalization at strong(er) coupling

Holographic Green’s functions at finite coupling

1. Green’s functions as a probe of thermalization
2. Some computational details

Results

1. Quasinormal modes at finite coupling
2. Off-equilibrium spectral densities

Conclusions
Motivation: Puzzles in heavy ion physics

Surprises from comparison of hydro predictions with RHIC/LHC data:

- Extremely early onset of hydrodynamic behavior: \(\tau_{\text{hydro}} \approx 0.5 \text{ fm/c} \), close to causal limit
- Small, yet nonzero shear viscosity \(\eta/s = \mathcal{O}(0.1) \)

Clear discrepancy with perturbative predictions: (All) features of the system not consistent with weakly coupled quasiparticle picture
Motivation: Puzzles in heavy ion physics

Particularly intriguing challenge: Understand the dynamics that take the system from complicated, far-from-equilibrium initial state to a near-thermal ‘hydrodynamized’ plasma

System and its characteristic energy scales evolve fast ⇒ Its description requires both perturbative and nonperturbative machinery
At RHIC/LHC energies, initial state well understood: Color Glass Condensate (CGC), characterized by

- One hard scale: Saturation momentum $Q_s \gg \Lambda_{QCD}$
- Overoccupation of gluons: $f(q < Q_s) \sim 1/\alpha_s$
- High anisotropy: $q_z \ll q_\perp$
Early dynamics of a collision

When describing early (weak coupling) dynamics of a collision, need to take into account:

- Longitudinal expansion of the system
- Elastic and inelastic scatterings
- Plasma instabilities

Traditional field theory tools available:

1. Classical (bosonic) lattice simulations — work as long as occupation numbers large\(^1\)
2. Parametric weak coupling estimates; however, even obtaining correct scaling of \(\tau_{\text{therm}}\) in powers of \(\alpha_s\) highly nontrivial\(^2\)

\(^1\)Berges et al., 1303.5650
\(^2\)Baier et al., hep-ph/0009237; Kurkela, Moore, 1107.5050; Blaizot et al., 1107.5296
Weak coupling thermalization — no expansion

Current understanding for homogenous and isotropic systems with initial overoccupation: *Thermalization proceeds as a turbulent cascade with self-similar evolution, associated with presence of a non-thermal fixed point* \(^3\)

In expanding systems, competition between interactions and longitudinal expansion, and between different thermalization mechanisms

\(^3\)Schlichting, 1207.1450
Weak coupling thermaliz. — expanding system

Inelastic scatterings drive bottom-up evolution
- Soft modes quickly create thermal bath
- Hard splittings lead to $q \sim Q_s$ particles being eaten by the bath

Numerical evolution of expanding SU(2) YM plasma seen to always lead to Baier-Mueller-Schiff-Son type scaling exponents at late times (Berges et al., 1303.5650)

Ongoing debate over role of instabilities in hard interactions, argued to lead to slightly faster thermalization: $\tau_{KM} \sim \alpha_s^{-5/2}$ vs. $\tau_{BMSS} \sim \alpha_s^{-13/5}$
Impressive results for the (very) early dynamics of a high energy collision. However, extension to full thermalization process in real-life heavy ion collisions problematic:

- Dynamics assumed classical in lattice simulations — works only at earliest times
- System clearly not asymptotically weakly coupled \Rightarrow Parametric α_s scalings of limited use, and going beyond them very hard

In absence of first principles field theory techniques, clearly room for input from holographic methods

Cleanest setup: Strong coupling limit of large-N_c $\mathcal{N} = 4$ Super Yang-Mills theory
Thermalization in heavy ion collisions

Thermalization at strong(er) coupling

Strong coupling thermalization

Important lessons from gauge/gravity calculations at infinite coupling:

- Thermalization always of top-down type (causal argument)
- Thermalization time naturally short, $\sim 1/T$
- Hydrodynamization \neq Thermalization, isotropization

Chesler, Yaffe, 1011.3562
Bridging the gap

Obviously, it would be valuable to bring the two limiting cases closer to each other — and to a realistic setting. Is it possible to:

- Extend weak coupling picture to lower energies, with \(\alpha_s \) of \(\mathcal{O}(1) \)?
- Marry CGC description of initial state and early dynamics with strong coupling evolution of the system?
- Bring gauge/gravity calculations closer to real QCD?
 - Finite coupling & \(N_c \), SUSY and conformal invariance breaking,...

Rest of the talk: Attempt to relax the \(\lambda = \infty \) approximation in studies of holographic thermalization
Table of contents

1 Thermalization in heavy ion collisions
 • Early dynamics of a heavy ion collision
 • Thermalization at weak coupling
 • Thermalization at strong(er) coupling

2 Holographic Green’s functions at finite coupling
 • Green’s functions as a probe of thermalization
 • Some computational details

3 Results
 • Quasinormal modes at finite coupling
 • Off-equilibrium spectral densities

4 Conclusions
Holographic Green’s functions

In- and off-equilibrium correlators offer useful tool to study thermalization:

- Poles of retarded thermal Green’s functions give dispersion relation of field excitations: Quasiparticle / quasinormal mode spectrum
 - Describe response of the system to infinitesimal perturbations
- Time dependent off-equilibrium Green’s functions probe how fast different energy (length) scales equilibrate
- Related to measurable quantities, e.g. particle production rates
Holographic Green’s functions

In- and off-equilibrium correlators offer useful tool to study thermalization:

- Poles of retarded thermal Green’s functions give dispersion relation of field excitations: Quasiparticle / quasinormal mode spectrum
 - Describe response of the system to infinitesimal perturbations
- Time dependent off-equilibrium Green’s functions probe how fast different energy (length) scales equilibrate
- Related to measurable quantities, e.g. particle production rates

Example 1: EM current correlator $\langle J_{\mu}^{EM} J_{\nu}^{EM} \rangle$

- Obtain by adding to SYM theory a U(1) vector field coupled to a conserved current corresponding to a subgroup of $SU(4)_R$
- Excellent phenomenological probe of thermalization because of photons’ weak coupling to plasma constituents
Holographic Green’s functions

In- and off-equilibrium correlators offer useful tool to study thermalization:
- Poles of retarded thermal Green’s functions give dispersion relation of field excitations: Quasiparticle / quasinormal mode spectrum
 - Describe response of the system to infinitesimal perturbations
- Time dependent off-equilibrium Green’s functions probe how fast different energy (length) scales equilibrate
- Related to measurable quantities, e.g. particle production rates

Example 2: Energy momentum tensor correlators $\langle T_{\mu\nu} T_{\alpha\beta} \rangle$ related to e.g. shear and bulk viscosities and dual to metric fluctuations $h_{\mu\nu}$
- Scalar channel: h_{xy}
- Shear channel: h_{tx}, h_{zx}
- Sound channel: $h_{tt}, h_{tz}, h_{zz}, h_{ii}$
Model of thermalization

- Simplest way to describe thermalizing system: Begin with a thin massive shell at $r = r_s > r_h$ and let it collapse towards $r_s = r_h$

<table>
<thead>
<tr>
<th>center</th>
<th>horizon</th>
<th>shell</th>
<th>boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r = 0$</td>
<td>$r = r_h$</td>
<td>$r = r_s$</td>
<td>$r = \infty$</td>
</tr>
</tbody>
</table>

- Metric piecewise defined:

 $$ds^2 = -r^2 f(r)dt^2 + \frac{dr^2}{r^2 f(r)} + r^2 dx^2, \quad f(r) = \begin{cases} f_-(r) = 1, & \text{for } r < r_s \\ f_+(r) = 1 - \frac{r_h^4}{r^4}, & \text{for } r > r_s \end{cases}$$

- Shell fills all of 3-space \Rightarrow System translationally and rotationally invariant

- In *quasistatic limit* — valid at large ω — Green’s functions available with a minor modification to standard (Son-Starinets) recipe
 - Bulk fields matched at the shell using junction conditions
Beyond infinite coupling: α' corrections

Recall key relation from AdS/CFT dictionary: $(L/l_s)^4 = L^4/\alpha'^2 = \lambda$, with α' the inverse string tension

- To go beyond $\lambda = \infty$ limit, need to add α' terms to supergravity action, i.e. first non-trivial terms in a small-curvature expansion
- Leading order corrections $\mathcal{O}(\alpha'^3) = \mathcal{O}(\lambda^{-3/2})$

End up dealing with $\mathcal{O}(\alpha'^3)$ improved type IIB sugra action

$$S_{IIB} = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-G} \left(R_{10} - \frac{1}{2} (\partial \phi)^2 - \frac{F_5^2}{4 \cdot 5!} + \gamma e^{-\frac{3}{2} \phi} (C + T)^4 \right),$$

$$T_{abcdef} \equiv i \nabla_a F^+_{bcdef} + \frac{1}{16} \left(F^+_{abcmn} F^+_{def}^{\ mn} - 3 F^+_{abfmn} F^+_{dec}^{\ mn} \right),$$

$$F^+ \equiv \frac{1}{2} (1 + *) F_5, \quad \gamma \equiv \frac{1}{8} \zeta(3) \lambda^{-3/2}$$

$\Rightarrow \gamma$-corrected metric and EoMs for different fields
Table of contents

1 Thermalization in heavy ion collisions
 - Early dynamics of a heavy ion collision
 - Thermalization at weak coupling
 - Thermalization at strong(er) coupling

2 Holographic Green’s functions at finite coupling
 - Green’s functions as a probe of thermalization
 - Some computational details

3 Results
 - Quasinormal modes at finite coupling
 - Off-equilibrium spectral densities

4 Conclusions
Quasinormal mode spectra at finite coupling

Solving for the poles of retarded thermal Green’s functions gives the *dispersion relation* of field excitations,

\[\omega_n(k) = E_n(k) + i\Gamma_n(k), \]

with \(E_n\) the energy and \(\Gamma_n\) the width of the mode

- At weak coupling expect long-lived quasiparticles with \(\Gamma_n \ll E_n\)
- At strong coupling expect quasinormal mode spectrum

\[\hat{\omega}_n|_{k=0} = \frac{\omega_n|_{k=0}}{2\pi T} = n(\pm 1 - i) \]

Magnitude of \(\Gamma_n\) related to thermalization pattern: At strong coupling, the highest energy modes decay fastest. What happens at intermediate coupling?
QNMs at finite coupling: Photons

Effect of decreasing λ: System flows towards quasiparticle spectrum already at relatively large couplings

NB: Convergence of strong coupling expansion not guaranteed, when $\hat{\omega}_n|_{k=0} = n(\pm 1 - i) + \alpha_n/\lambda^{3/2}$ shifts by $O(1)$ amount
QNMs at finite coupling: Photons

Similar shift at nonzero three-momentum: $k = 2\pi T$
QNMs at finite coupling: $T_{\mu \nu}$ correlators

Same effect also in the shear (left) and sound (right) channels of energy momentum tensor correlators (here $k = 0$)
Outside the $\lambda = \infty$ limit, the response of the strongly coupled plasma to infinitesimal perturbations appears to change, moving towards that of a weakly coupled quasiparticle system.

What happens if we take the system further away from equilibrium?
Off-equilibrium Green’s functions: Definitions

Natural correlation function to study thermalization with: Spectral density

\[\chi(\omega, k) \equiv \text{Im } \Pi_R(\omega, k), \]

related to particle production rates when fluctuation dissipation theorem valid (large \(\omega \) in falling shell picture). For photons,

\[
k^0 \frac{d\Gamma_\gamma}{d^3k} = \frac{1}{4\pi k} \frac{d\Gamma_\gamma}{dk_0} = \frac{\alpha_{\text{EM}}}{4\pi^2} \eta^{\mu\nu} \Pi_{\mu\nu}(k_0 \equiv \omega, k) = \frac{\alpha_{\text{EM}}}{4\pi^2} \eta^{\mu\nu} n_B(\omega) \chi_\mu(\omega, k)
\]

Useful measure of ‘out-of-equilibriumness’: Deviation of spectral density from its thermal limit

\[R(\omega, k) \equiv \frac{\chi(\omega, k) - \chi_{\text{therm}}(\omega, k)}{\chi_{\text{therm}}(\omega, k)} \]

In quasistatic approximation, approach towards equilibrium parameterized by \(r_s/r_h \to 1 \)
Spectral density and R at $\lambda = \infty$: Photons

Left: Photon spectral functions for different virtualities ($c = k/\omega$) in thermal equilibrium and at $r_s/r_h = 1.1$

Right: Relative deviation $R \equiv (\chi - \chi_{\text{th}})/\chi_{\text{th}}$ for $r_s/r_h = 1.1$ and $k/\omega = 0, 0.8, 1$

Note: 1) Highly virtual field modes thermalize first

2) Clear top-down thermalization pattern (as always at $\lambda = \infty$)
Relative deviation at intermediate λ: Photons

Relative deviation $R \equiv (\chi - \chi_{th})/\chi_{th}$ for on-shell photons with $r_s/r_h = 1.01$ and $\lambda = \infty, 500, 300$ (left) and $150, 100, 75$ (right)

NB: Change of pattern with decreasing λ: UV modes no longer first to thermalize! Sign of top-down turning into bottom-up?
Relative deviation at intermediate λ: $T_{\mu\nu}$ correlators

Relative deviation $R \equiv (\chi - \chi_{\text{th}})/\chi_{\text{th}}$ in the shear (left) and sound (right) channels for $r_s/r_h = 1.2$, $\lambda = 100$, and $k/\omega = 0$ (black), $6/9$ (blue) and $8/9$ (red)
Physical interpretation of results?

So what to make of all this? Evidence for holographic plasma starting to behave like a system of weakly coupled quasiparticles at finite coupling, or simply

- ... due to the breakdown of some approximation?
 - Quasistatic limit good approximation as long as $\omega / T \gg 1$
 - Strong coupling exp. applied with care: $(\text{NLO-LO})/\text{LO} \lesssim \mathcal{O}(1/10)$

- ... a peculiarity of the channels considered, but not a fundamental feature of the plasma?
 - Interesting recent results for purely geometric probes, indicating not all correlators turn towards bottom-up behavior\(^4\)

- ... a sign of the unphysical nature of the collapsing shell model?
 - Perhaps; certainly warrants more work. However, at least QNM flow results universal

\(^4\)Galante, Schvellinger, 1205.1548
Table of contents

1. Thermalization in heavy ion collisions
 - Early dynamics of a heavy ion collision
 - Thermalization at weak coupling
 - Thermalization at strong(er) coupling

2. Holographic Green's functions at finite coupling
 - Green's functions as a probe of thermalization
 - Some computational details

3. Results
 - Quasinormal modes at finite coupling
 - Off-equilibrium spectral densities

4. Conclusions
Take home messages

1. Taking holographic (thermalization) calculations away from $\lambda = \infty$ limit not only possible, but potentially a rather fruitful exercise.

2. Indications that the holographic system obtains weakly coupled characteristics within the realm of a strong coupling expansion:
 - QNM poles flow in the direction of a quasiparticle spectrum
 - Top-down thermalization pattern weakens and shifts towards bottom-up

3. Naive(?) conclusion: To describe physical heavy ion system ($\lambda \sim 20$) using holography, accounting for strong coupling corrections important.